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ABSTRACT

Simulation has long been used in healthcare settings to study a range of prob-

lems, such as determining ideal staffing levels, allocating patient beds, and assisting

with medical decision making. Some of this work naturally focuses on the spread of

infection within hospitals, where the importance of hospitals as loci and amplifiers

of infection was demonstrated during the 2002-2003 SARS outbreak. Increasingly,

fine-grained healthcare data is being collected (e.g., patient care data stored in elec-

tronic medical record systems, and healthcare worker data from sources including

nurse locator badges), presenting an opportunity to develop models that can drive

more realistic simulations. We seek to build a realistic hospital simulator that can be

used to answer a wide variety of questions about infection prevention, the allocation

and placement of expensive resources, and issues surrounding patient care.

Our simulation framework requires three primary inputs: architectural, health-

care worker, and patient data. We used data from the University of Iowa Hospitals and

Clinics to build our virtual hospital. We manually constructed a weighted, directed,

19,000 node graph-theoretic representation of the facility based on printed archi-

tectural drawings. Using timestamped location information from electronic medical

record system logins and algorithms inspired by prior work on location-aware search,

each healthcare worker is modeled by one or more “centers” of activity. Centers

are determined using a maximum likelihood approach to fit a location and appro-

priate decay parameters that best describe the observed data. Finally, we developed
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compartmental patient models of varying granularity, with each compartment repre-

senting some subset of patient care areas within the hospital. Transition probabilities

and patient length of stay were fit using three years of patient data.

In designing our simulator, we were able to minimize assumptions about

how healthcare workers and patients move, avoiding the “random mixing” assump-

tion common to many infectious disease simulators. We translated techniques from

location-aware search into the hospital environment, developed data structures for

use in efficiently processing millions of location data points in tens of thousands of

rooms for thousands of healthcare workers, improved the performance of the algo-

rithm for identifying optimal single-center healthcare worker models, and introduced

heuristics for training multi-center models. We validated our models by comparing

the properties of simulated data to known quantities, and testing against expert ex-

pectations. To the best of our knowledge, this is the first agent-level hospital-wide

simulator based on fine-grained location and interaction data for healthcare workers

and patients.
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ABSTRACT
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with medical decision making. Some of this work naturally focuses on the spread of

infection within hospitals, where the importance of hospitals as loci and amplifiers

of infection was demonstrated during the 2002-2003 SARS outbreak. Increasingly,

fine-grained healthcare data is being collected (e.g., patient care data stored in elec-

tronic medical record systems, and healthcare worker data from sources including

nurse locator badges), presenting an opportunity to develop models that can drive

more realistic simulations. We seek to build a realistic hospital simulator that can be

used to answer a wide variety of questions about infection prevention, the allocation

and placement of expensive resources, and issues surrounding patient care.

Our simulation framework requires three primary inputs: architectural, health-

care worker, and patient data. We used data from the University of Iowa Hospitals and

Clinics to build our virtual hospital. We manually constructed a weighted, directed,

19,000 node graph-theoretic representation of the facility based on printed archi-

tectural drawings. Using timestamped location information from electronic medical

record system logins and algorithms inspired by prior work on location-aware search,

each healthcare worker is modeled by one or more “centers” of activity. Centers

are determined using a maximum likelihood approach to fit a location and appro-

priate decay parameters that best describe the observed data. Finally, we developed
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compartmental patient models of varying granularity, with each compartment repre-

senting some subset of patient care areas within the hospital. Transition probabilities

and patient length of stay were fit using three years of patient data.

In designing our simulator, we were able to minimize assumptions about

how healthcare workers and patients move, avoiding the “random mixing” assump-

tion common to many infectious disease simulators. We translated techniques from

location-aware search into the hospital environment, developed data structures for

use in efficiently processing millions of location data points in tens of thousands of

rooms for thousands of healthcare workers, improved the performance of the algo-

rithm for identifying optimal single-center healthcare worker models, and introduced

heuristics for training multi-center models. We validated our models by comparing

the properties of simulated data to known quantities, and testing against expert ex-

pectations. To the best of our knowledge, this is the first agent-level hospital-wide

simulator based on fine-grained location and interaction data for healthcare workers

and patients.
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CHAPTER 1
INTRODUCTION

Computer simulation of real-world processes is a technique used to answer

a variety of questions in numerous disciplines. Simulation is used in meteorology

to predict daily precipitation [100], it is used in logistics to predict inventory levels

[109], and it is used in education to prepare medical students for surgery [63]. Sim-

ulation also has a long history in healthcare environments. Even before the advent

of the modern personal computer, simulation had been used to study problems such

as healthcare worker staffing, patient bed allocation, and medical decision making

[40, 65]. More recently, modeling has been used to capture the effects of hospital

architecture on the frequency of staff visit to patient beds [53], and simulation could

be used to test potential architectural layouts.

Simulation has also been used to study the spread of infectious diseases. The

first account of disease modeling was its use by Bernoulli in 1786 to defend the

introduction of the smallpox inoculation [12]. Since then, the SIR model and its

variants have been widely used to model and simulate disease [54], and more recently

agent-based simulation has been explored [44]. While epidemiological simulation has

been done at the macro level for some time, recently the outbreak of SARS in China

and Canada [92] has highlighted the importance of hospitals as vectors for disease.

The aim of this work is to lay out a framework for the accurate simulation of

healthcare environments by introducing models which leverage the increasingly fine-

grained care data being made available by the recent digitization of healthcare data.
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The simulator and models can be used to study a wide range of problems, including

the spread of nosocomial infection, cost-effective delivery of care, and patient care

issues.

Previous work in discrete-event agent-based simulation with applications in

healthcare can be divided into two groups: those that use off-the-shelf operations

management software or process definition languages [99, 24, 36, 75, 107, 110, 76],

and those that build custom simulators to answer a very specific question [59, 17, 25].

In both cases, the range of applications for a particular simulator are very limited.

There are three main problems with these approaches. First, repurposing existing

software requires defining problems in terms of processes and resource usage, which

may be appropriate for studying some optimization problems, such as bed occupancy,

but it is not clear how such a simulator could be used to study other problems, e.g., the

spread of infectious diseases. Second, these highly structured simulation frameworks

seem problematic for creating a realistic mix of patients. While factory widgets can

be assembled within strict tolerances, fully specifying patients with wide ranging

diagnoses would be a significant challenge. Third, despite evidence that hospital

architecture can greatly impact real healthcare worker interaction patterns [53], the

vast majority of previous work either ignores location entirely, focuses on a small

geographic area, or does not incorporate physical space meaningfully into modeling

efforts. Indeed, at least one set of authors describes physical location in patient

modeling as a “distraction” [17]. Our goal is to develop a simulation framework that

is useful for a wide variety of applications.
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Figure 1.1: Spatial data, patient data, and healthcare worker data are the three main
types of input used in our infectious disease simulation framework. See Chapter 2
for more information about healthcare worker modeling, and Chapter 3 for more
information about patient modeling. Disease modeling and simulation as well as
additional applications are discussed in Chapter 4.
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Figure 1.1 shows the components in our simulation framework in the context

of infectious disease simulation. Our simulator takes three main types of information

as input: an architectural model, parameters for a healthcare worker model and pa-

rameters for a patient model. An architectural model of the hospital is the foundation

upon which the patient and healthcare worker models are constructed. Our model

of the physical space in a hospital is a graph-theoretic model, with a node for every

room in the hospital and an edge connecting every pair of nodes that are directly

connected (e.g., by a doorway). Healthcare worker and patient model parameters are

used to generate agendas, which specify when and where these individuals are located

at any given time.

The use of agendas to model movement is unique to our simulator, because our

simulator explicitly models geometric architectural constraints. There are two main

criteria for healthcare worker agendas. Healthcare workers must show up in each room

an appropriate number of times, and the transition from one room to another must

respect spatiotemporal constraints, i.e., a healthcare worker cannot reasonably move

250 meters in 25 seconds. We decompose the generation of healthcare worker agendas

into two components. First, we build a model generator which produces probabilities

a healthcare worker will be in any given room. Our model generator uses movement

data from some healthcare worker tracking technology (e.g., nurse locator badges), to

train generative models of healthcare workers. The models, in conjunction with model

parameters such as the attractiveness of each room in the hospital and the number of

nurses on duty, are used to generate agendas for a population of healthcare workers.
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A more complex model of healthcare worker movement might even take patient load

information as a parameter when generating healthcare worker agendas. There is pre-

existing work in spatial modeling in ecology [104], criminology [16], and the study

of patterns of human travel at a macro level [15], but our generative healthcare

worker modeling draws in particular upon work in location-aware search [7]; to our

knowledge, there is no previous work on the use of agendas in healthcare simulators

because our simulator is unique in its attention to architectural constraints.

We then use patient records to train a number of patient models that generate

agendas for inpatients and outpatients. A number of groups have developed models of

patients for use in simulation [27, 41, 112, 8, 70, 62, 38, 40], typically by dividing the

population into compartments, subpopulations within which individuals are consid-

ered interchangeable. Generally, patients are assigned to one of 3-4 compartments in

the hospital and 1-2 compartments in the community. There might be a compartment

in the hospital to hold acute patients, rehabilitative patients, and long-term patients.

The community might have one compartment for the general population, and one for

those receiving care in nursing homes. In our models, we have a compartment for

every unit in the facility, and transition matrix specifying the probability of transfer

from each compartment to every other compartment, as well as an expected length

of stay before transferring. A patient agenda is a complete picture of what rooms a

patient visits during their visit to the hospital including what rooms are visited and

for how long.

The primary application for our realistic hospital simulator is infectious disease
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simulation. Until recently, most infectious disease modeling relied on the mass-action

assumption [81, 54] which essentially amounts to assuming that all individuals mix

randomly with other individuals within their compartment. Meyers et. al show that

under certain conditions epidemiological simulation with a random mixing assumption

is a poor substitute for an agent-based simulator [81].

We would like to leverage newly available technologies such as Electronic Medi-

cal Record systems, nurse locator badges, and other RFID or mote-based technologies

that are capable of producing fine-grained location data. Through the use of fine-

grained training data for realistic hospital architectural, healthcare worker and patient

modeling we intend to develop an accurate discrete agent-based (compartment size

= 1) simulator suitable for use in comparing the relative effectiveness of a variety of

infection control policies.

1.1 Modeling Healthcare Workers

The University of Iowa Hospitals and Clinics (UIHC) is a 3.2 million square

foot facility that employs approximately 8,000 healthcare workers, of which about

4,000 are in the hospital at any given time. The UIHC has, at any given time, over 650

in-patients with an average 3-6 day length of stay. In 2007, 740,000 out-patients were

treated at the UIHC. Given this scale of operations, there are numerous opportunities

to implement new policies and procedures that could lead to improvements in patient

outcomes while simultaneously reducing healthcare costs. Attempting to understand

and exploit these opportunities can sometimes lead hospital administrators to ask
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very specific questions. Two examples that motivate our work are the following.

(1) During vaccination shortages (e.g., the influenza vaccine shortage of 2004-2005

[111]), which healthcare workers or which categories of healthcare workers should

we target for vaccination?

(2) We want to locate 80 time clocks in the UIHC facility for staff to punch in their

hours. Where should we locate these in order to minimize overall access time?

There are numerous other examples: time-and-motion efficiency studies for

improving healthcare delivery, which hospital units to move into a newly constructed

wing, optimal placement of incoming patients with certain diagnosis, etc. In this

paper, we present a computational approach for solving these and other similar prob-

lems.

Different classes of healthcare workers inhabit different parts of the hospital,

and exhibit very different levels of mobility and temporal patterns. Administrators

might have an office in which they spend most of their time, while inpatient nurses

will regularly move between a small cluster of patient bedrooms. Residents and

therapists see patients all over the hospital and are highly mobile. Motivated by

work on estimating the spatial distribution of web search queries [7] and older work

from spatial biostatistics [104], our approach utilizes the “electronic footprints” that

healthcare workers leave behind in the hospital’s electronic medical record system to

estimate their spatial probability distributions within the UIHC facility.
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1.1.1 The Hospital Metric Space and Login Data

After considering using the metric space implied by the Euclidean distance

between pairs of room in the UIHC facility, we determined that straight-line shortest

paths do not respect hospital geometry or represent reasonable “walking distances”

between pairs of hospital rooms. We therefore impose a metric space on the UIHC

facility that corresponds to the “walking distance” between pairs of hospital rooms.

To construct this metric space, we manually created a graph model by examining

detailed printed architectural drawings of the hospital and matching these drawings

with a master spreadsheet of hospital rooms and their utilization, provided by the

UIHC. We represented each room in the hospital by a node in the so called hospital

graph, and for every pair of rooms in the hospital between which it is possible to move

directly (e.g., through a doorway), we created an edge between the corresponding

nodes. In order to have a consistent concept of distance, corridors and large rooms

(e.g., cafeterias, atriums) are divided into smaller “room-sized” chunks (See Figure

1.2). Traveling along an edge of the hospital graph is roughly equivalent to walking

5-6 meters. For greater flexibility, we view each edge {u, v} as two directed edges

(u, v) and (v, u), allowing for distinct weights to be assigned to edges in opposite

directions. This helps us in modeling certain natural preferences of people who move

about in the hospital, such as using corridors rather than walking through other units

(even if that meant a shorter walk) or using an elevator to go up the floors rather

than a staircase.

The weights we assign to edges are all between 0.8 and 4.0. Somewhat arbitrar-
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! !

Figure 1.2: Notice that long hallways and large rooms have been subdivided into
smaller, room-sized chunks.
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ily, we fix these in the following order: walking down a corridor has the lowest weight

(0.8 hops), followed by the normal room-to-room cost (1.0 hops), the cost of taking

an elevator (2.0 hops, independent of the number of floors), the cost of descending

a flight of stairs (3.0), and the cost of ascending a flight of stairs (4.0 hops). This

ordering of weights is meant to roughly reflect the effort and time required to travel

along an edge. The hospital graph that results from this construction has 18,961

nodes and 46,884 directed edges and we work with the metric space1 induced by the

shortest path distances on this graph. It is worth pointing out that distances in this

metric space may be quite different from Euclidean distances between rooms seen as

points in 3D space (see Figures 1.3 and 1.4).

The data that form the basis for our models and applications are healthcare

worker login records to the UIHC electronic medical record (EMR) system. Each

login record to the UIHC EMR system contains information on the healthcare worker

initiating the login (uniquely anonymized) including the healthcare worker’s current

job code and department, the ID of the machine being used, the location of the

machine, and the start time-stamp and the end time-stamp of the login. After filtering

out roughly four million records with missing location information, and four million

additional records with ambiguous or unusable location information, we were left with

approximately 11.7 million records from a 22 month period beginning September 2006

1Technically, this is not a metric space since distance d(u, v) may be distinct from distance

d(v, u). However, since the weights are in the range 0.8 to 4.0, symmetry is satisfied approximately

and triangle inequality is satisfied exactly.
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Figure 1.3: A small portion of the hospital graph corresponding to the second floor
of the UIHC. Each room or corridor segment is represented by a node, connected by
edges to adjacent rooms or corridor segments. This particular image was produced
by superimposing the graph onto a CAD drawing of the floor plan.

Figure 1.4: The entire hospital graph superimposed on a 3-dimensional architectural
drawing of the hospital. Nodes are colored according to the building they belong to.
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and ending July 2008. There are 14,596 healthcare workers who login to the EMR at

least once during this period using 17,522 different machines distributed over 4,379

locations in the UIHC facility. The machine locations are well spread out in the

hospital with the average distance between a room in the UIHC facility and a room

with a machine being 2.816 (± 2.258). Due to the small average distance to a machine,

especially in patient care areas, and a privacy feature that terminates EMR sessions

after a period of inactivity, it is reasonable to assume that EMR activity in an area

strongly correlates with a healthcare worker spending time in that area.

While the vast majority of healthcare workers access the EMR, there are cer-

tain groups of healthcare workers, e.g., housekeeping, information technology, and

janitorial staff, who rarely or never access the EMR. Further, we have anecdotal evi-

dence of healthcare-worker behaviors that could bias the EMR data in different ways,

e.g., when a group of healthcare workers visits a patient in an intensive care unit,

interacting with the EMR tends to be the responsibility of junior-most staff member.

In future work one could deal with such “holes” in the EMR data by using a variety of

other data gathering mechanisms, including the use of wireless technology [95, 56, 61].

1.1.2 Healthcare Worker Location Model

There are a number of different approaches for developing generative spatial

models for healthcare workers. One possibility is using discrete models. For example,

each healthcare worker could have an independent probability of being in each room.

Ultimately, we use continuous models similar to those described in Backstrom et al.
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because they are well understood, compact, and have nice properties allowing for

efficient model training [7].

We start with the assumption that every healthcare worker has a geograph-

ical center for their activity and that their spatial distribution polynomially decays

as we move away from the center, where the rate of decay is determined by two

additional parameters. Our model is inspired by the work of Backstrom et al. [7]

who partition the geographical region of the U.S. into grid cells and estimate, using

a similar center and dispersion based model, the probabilities of different queries q

being issued from different grid cells. While our model is similar to their model in

these aspects, there are important differences due to the fact that queries and people

(specifically, healthcare workers) are after all fundamentally different entities. The

same query, for example for the “New York Yankees,” can be issued from multiple

locations simultaneously whereas a healthcare worker can be in at most one location

in the hospital at any time. Our primary goal here is to estimate a static spatial

distribution for each healthcare worker, and to do this we suppose that each room v

has an associated parameter αv that denotes, in a loose sense, the “attractiveness”

of room v to healthcare workers. Certain UIHC rooms, e.g., the nurse’s station in a

unit, may see a lot more traffic than a nearby patient room, and such rooms will have

a correspondingly higher αv value.

Thus for a setting withm healthcare workers and n rooms, we need to estimate

3m + n model parameters. Solving for the maximum likelihood estimators of the

model parameters could potentially require solving Ω(mn) continuous optimization
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problems. On the face of it, this is computationally infeasible (since m is roughly

15,000 and n is roughly 19,000). In Section 2.4 we describe algorithms that take

advantage of properties of the underlying metric space to prune away from the search

space many of the UIHC rooms for each healthcare worker. These algorithms make

the model parameter estimation computationally feasible.

1.1.3 Multiple Centers

While the single center models adequately fit the observed data for a significant

number of healthcare workers, there are some healthcare workers for which multi-

center models are much better at fitting the observed data. We demonstrate how

multi-center models may be appropriate for some users by walking through a typical

day and examining observed logins for selected healthcare workers. We demonstrate

that multi-center models do little to improve a subset of users expected to be ad-

equately modeled with single-center models, but do a vastly superior job of fitting

EMR data for a subset of healthcare workers who have clusters of activity in different

areas of the hospital.

We consider two classes of multi-center models. Additive multi-center models

are models where each center contributes some (possibly very little) probability of

activity to each room in the graph. Disjoint multi-center models are those in which

activity in a certain room is solely determined by the center having the greatest

influence at that room. That is, additive multi-center models add the probability

vectors for each center before scaling, while disjoint multi-center models take the
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maximum probability for each room over each center.

We show that unlike the single-center models, neither class of multi-center

models is easily optimized numerically, meaning that you may end up with locally

and not globally optimal solutions. We thus focus on heuristics for finding good multi-

center models; we will discuss why the use of heuristics is appropriate in Chapter 2.

1.1.4 Validation

Given our interest in building a realistic hospital simulator, we now consider

how to verify that our models generate activity that in some meaningful way con-

forms to reality. Our review of healthcare simulation research identifies a number of

techniques for validating models and simulators: (1) internal validation (e.g., cross-

validation, sensitivity analysis) [17, 24, 59, 2], (2) checking properties of generated

data against known quantities [2, 24, 75, 76, 59], (3) visualizing generated data and

presenting it to healthcare professionals [36, 17, 99, 24, 75], (4) verifying results are

similar for a second dataset [17], and (5) software verification (e.g., unit testing, sanity

checks via assertions) [99, 24].

We perform the first three types of validation. For example, (1) we compare

models trained on different subsets of our data to verify they are similar, (2) we

compare generated locations for Pediatric healthcare workers with the known location

of that department, and (3) we compare differences in generated data for various

job types with the expectations of those familiar with hospital operations. Note

that because this work represents the first effort to model the physical location of
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healthcare workers based on fine-grained data, and due to the challenges associated

with obtaining the fine-grained location data required to construct our healthcare

worker models, we were unable to repeat the entire process at a second facility for

validation purposes. We expect the necessary data to become increasingly available

and the process increasingly automated over the coming years. While we did not

develop a full, formal specification of our software to use for software verification, we

do use assertions heuristically to perform sanity checks on certain variables.

1.2 Modeling Patients

No model of a hospital would be complete without a model of patient move-

ment, or flow. Many patients have compromised immune systems and are at an

elevated risk of morbidity and mortality, making them an essential element in a real-

istic simulation of disease, as well as simulations in support of answering operational

questions. Patient models are also essential in the study of various resource allocation

problems and clearly critical when examining quality of care issues. Here we seek to

develop a realistic model of patient care which can be used in simulation to study a

wide range of problems.

1.2.1 Model Description

Previous work in patient modeling makes widespread use of compartmental

models [70, 62, 38, 40]. Models range in complexity from having just one compartment

for acute patients and another for long-term care patients to models having four

hospital compartments and two community compartments. In order to take advantage
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of the fine-grained data available, we propose a model with one compartment for

each patient care unit or clinic in the hospital, and one compartment situated in the

community.

Model training is based on a data set from the University of Iowa Hospitals

and Clinics. The data set contains every inpatient and outpatient admission, transfer,

and discharge (ADT) between January 1, 2006 and June 1, 2009. The data set allows

us to nearly completely follow the path of each patient that set foot in UIHC over a

3.5 year period, and additional information about the patient (e.g., patient diagnosis).

We present two different patient models, both of which are trained with the

ADT. Each patient has a length of stay assigned from the overall length of stay ob-

served in the compartment he or she is entering. Admissions, transfers and discharges

are modeled by a complete graph with edge weights giving transition probabilities

from each compartment to every other compartment.

The first patient model is a very simple model where some percentage of patient

beds is assumed to be filled at all times. Patient lengths of stay are drawn from a

log-normal distribution, and a new patient immediately replaces discharged patients.

The second model uses one compartment for each unit in the hospital. Transfer

probabilities and compartment length of stay times are a function of other parameters

such as admission time. New patients are admitted after some delay (dependent on

the time of day). A second set of length of stay distributions and compartment-to-

compartment transfer probabilities is used for patients that have been transferred

out of an intensive care unit while it is at or near capacity. Previous work suggests
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that such patients may be more likely to be readmitted to intensive care, have longer

lengths of stays, and have worse outcomes [39, 21, 19, 108].

1.2.2 Training Parameters

We train our patient models based on three years of UIHC admission, discharge

and transfer data (ADT). This data set gives us a complete picture of patient flow

for both inpatient units and outpatient clinics down to the time of day a patient was

transferred and which bed of which room the patient was transferred to. We also have

information about which nursing station and which service the patient is assigned to

as well as the patient’s primary diagnosis.

Patients in each compartment have some waiting time and some probability of

transferring to each other compartment, including discharge into the community. As

with all statistical problems, the more complex the model, the more data is required

to get a reasonable fit. In cases where the set of training data for each compartment

is very small, we determine admission and transfer rates by aggregating data sets

from similar compartments.

In our simple model, we need only calculate the average number of beds oc-

cupied at any given time and find the maximum likelihood log-normal length of stay

distribution. Training our second model requires calculating length of stay distribu-

tions and compartment-to-compartment transfer probabilities for each compartment,

as well as the second set used for patient transferred out of an intensive care unit at

or near capacity.
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1.2.3 Validation

Our patient model validation faces similar issues to those outlined in discussion

of healthcare worker model validation (Section 1.1.4). As with our healthcare worker

model validation, we use internal validation, comparison with expert predictions (on

a much smaller scale), and software verification. In this case, however, our training

data represents a nearly complete picture of patient flow, so we are able to compare,

e.g., patient load in each unit in the observed data with that in the generated data.

While we do not have inpatient flow data for a second facility, in this case we are able

to verify that the rate of intensive care readmissions in our simulator are in line with

those in our observed data as well as other real world patient datasets reported by

other groups [19, 79].

1.3 Applications for a Hospital Simulator

A realistic hospital simulator (such as the one described here) can be used

to study a range of problems. Hospitals can act as loci and amplifiers of infection

during an epidemic, and hospital-acquired infections have long been an issue. And

while epidemiological simulation is the primary application we study with our hospital

simulator, a hospital simulator could also be used to study staffing issues, patient bed

allocation, and the placement of expensive resources such as crash carts.

1.3.1 Epidemiological Simulation

Infectious diseases are responsible for about 15 million deaths annually world-

wide [43], and hospital-associated infections are responsible for an estimated 100,000
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deaths annually in the United States alone [73]. The 2003 outbreak of severe acute

respiratory syndrome (SARS) in Chinese and Canadian hospitals highlighted the fact

that infections acquired in the hospital can also be passed back into the commu-

nity [92]. In fact, 20-40% of infected individuals in the 2003 outbreak of SARS were

healthcare workers [90]. Additionally, hospital-acquired infections are a major source

of morbidity and mortality, affecting about 2 million Americans every year, and cost-

ing over $4.5 billion [50]. A realistic infectious disease simulator allows us to gain

insight into the dynamics of infectious disease in the hospital environment and shed

light on the relative efficacy of various infectious control policies.

Infectious disease modeling dates from the eighteenth century when Daniel

Bernoulli developed a smallpox disease model to argue that smallpox variolation (i.e.,

intentionally infecting individuals through exposure to a mild case of the disease), was

good for the population of England as a whole even though some individuals might

become ill or even die as a result [13]. In the twentieth century, disease models incor-

porated multiple stages of infection [72]: Hethcote offers an excellent survey of such

SIR-based models [54]. In the simplest case, the population is treated as homogeneous

and the mass-action principle is used to derive a set of three equations governing the

transfer between the susceptible, infected, and recovered stages of disease.

While models based on uniform or random mixing assumptions have their uses,

it has been argued recently by Newman and Meyers that infectious disease models that

assume random mixing can be inappropriate in cases where populations are believed

to mix heterogeneously [86, 82, 9]. Specifically, Newman considers contact networks
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that exhibit “small-world” properties, and shows that disease simulation with and

without the random mixing assumption predicts very different epidemic behavior.

Recent work suggests that healthcare worker contact graphs may indeed exhibit small

world properties [61, 29, 28], so in this thesis we tend, in the limit, towards agent-

based infectious disease simulations (e.g., one compartment for each agent in the

simulation rather than one compartment for the entire population). We find that

healthcare worker contact networks based on our agent-based simulator do indeed

exhibit classic “small world” properties [117, 87], and thus agent-based simulation is

critical for understanding and controlling the spread of hospital-acquired infections

such as “Clostridium difficile” (C. diff), methicillin-resistant “Staphylococcus aureus”

(MRSA), or vancomycin-Resistant “Enterococcus” (VRE).

Our agent-based infectious disease model has a number of parameters making

it flexible enough to handle a wide variety of infectious diseases, though we focus in

particular on mumps and flu. We obtain parameter values from existing literature on

these diseases [54, 14, 3, 102, 93, 106, 80, 78] , and we perform sensitivity analysis to

confirm that our results are robust in the face of uncertainty in parameter estimation.

As a sample application of infectious disease simulation, we simulate the spread

of mumps within a hospital environment with three different infection control policies

in place: (1) Do not quarantine healthcare workers, (2) quarantine healthcare work-

ers displaying symptoms for 5 days, or (3) quarantine healthcare workers displaying

symptoms for 9 days. This application is motivated by the fact that the Centers for

Disease Control and Prevention, the Healthcare Infection Control Practices Advisory
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Committee, and the Academy of Pediatrics all recently changed their mumps quaran-

tine policy from recommending 9 days of quarantine following the onset of symptoms

to 5 days [1]. We use an SIR-based model of infectious disease with transmission

parameters based on the mumps literature and run discrete agent-based simulation

until all agents are either susceptible or recovered. This application is very similar to

other work done by the CompEpi group [96, 57].

1.3.2 Resource Allocation Problems

Hospitals are necessarily interested in finding ways to reduce operational costs

while maintaining or increasing the quality of patient care. One example that arose

from our own UIHC is the placement of time clocks in the facility. One possibility

would be to place the clocks near all of the entrances, but administrators calculated

that due to the size of UIHC (it can take 15 minutes to walk from one end to the

other), placing clocks near where employees actually work would save millions of

dollars annually. We use the healthcare worker spatial distributions to find near

optimal placement for k time clocks, where the objective is to minimize the average

extra distance a healthcare worker has to travel in order to punch in their hours.

This application is a canonical example of how the problem of locating resources

(e.g., medical equipment, crash carts, pharmaceutical stores, etc.) in a large hospital

might be approached.
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1.3.3 Intensive Care Recidivism

Readmission to the intensive care unit shortly after being transferred out is

strongly associated with increased risk of mortality, longer lengths of stay, and higher

costs of care [39, 22, 10, 74, 23]. There is some agreement in the intensive care recidi-

vism literature about medical problems that patients who are readmitted to intensive

care share, but there is little to no agreement on what might lead to recidivism.

We take advantage of our fine-grained patient data sets to help shed some

light on what leads to intensive care recidivism. In particular, we present evidence

that a patient’s chance of being readmitted to an intensive care unit goes up as the

number of fellow patient in intensive care goes up. A working hypothesis is that as

the population of an intensive care unit rises, the incentive for healthcare workers to

transfer “marginal” cases out of intensive care increases. We look at the chance of a

particular patient being “bounced back” to intensive care within 48 hours relative to

the number of patients per healthcare worker on the day the patient was transferred

out.

Using the generative healthcare worker models from Section 2.7, we examine

how alternate staffing policies might affect recidivism.

1.4 Broader Context

The primary contributions of this thesis are: (1) it is the first agent-based

hospital simulator based on fine-grained data (i.e., no random mixing assumption),

(2) we present generative healthcare worker and patient models which are compact,
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flexible, and can be trained efficiently from real data, and (3) we show how (1)

and (2) can be combined to address a variety of practical questions. Early purely

analytical work [54] has been more recently followed by studies of the spread of

infectious disease on arbitrary contact networks [81], and later, more specifically,

contact networks within hospitals [116, 113, 114]. However, this work is the first

hospital-wide simulator based on fine-grained location data suitable for operational

modeling and agent-based simulation.

1.5 Organization of this Thesis

In Chapter 2, we will introduce the University of Iowa Hospitals and Clinics

in more detail, discuss our spatial model, and discuss healthcare worker modeling in-

cluding both the single-center of multi-center variants. The chapter will also include

validation and applications specific to the healthcare worker models and a discussion

of how the models are used to generate data for use in simulation. Chapter 3 will focus

on patient modeling. It will discuss the benefits of each of two patient models, and

issues with training the more complex models. It will also include model validation,

patient-centric applications and a discussion of how the models are used to generate

data for use in simulation. Chapter 4 will look at applications that combine both

healthcare worker and patient models. The primary application incorporates health-

care worker and patient data with infection diffusion data to simulate nosocomial

infections and the effect of infection prevention policies.
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CHAPTER 2
MODELING HEALTHCARE WORKERS

2.1 Introduction

Our agent-based simulator requires as input some form of agendas, i.e., planned

trajectories for each HCW participating in the simulation. These agendas should re-

spect temporal and spatial constraints (i.e., a HCW can only move directly between

adjacent room within UIHC), reflect different activity levels in various parts of the hos-

pital at different times of day, and be generated efficiently and non-deterministically.

We thus are interested in identifying sources of HCW location data, as well as com-

pact, generative models, thousands of which can be trained within a day or two on

modern hardware.

Location data is increasingly a subject of interest in healthcare settings. Re-

cent work has looked at small deployments of wireless sensor devices to gather HCW

location location data and contact networks. Heo et al. use radio-frequency iden-

tification (RFID) devices to study the effects of architecture of nurses’ movement

patterns, e.g., the frequency a nurse visits certain patient rooms [53]. Other groups

use wearable wireless technology within a healthcare setting. Olguin et al. instru-

mented nurses in a patient care unit with badges and sensors capable of reporting

physical activity, speech, and proximity to other badges to study delays in patient care

[89]. Isella et al. use wearable sensor to look at mixing patterns within a healthcare

setting [61], and other groups have used various means to study contact networks
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of healthcare workers [119, 33, 116]. The CompEpi research group has also devel-

oped wearable badges to automate hand-hygiene monitoring, and study the contact

networks of HCWs [56, 95].

In addition to technologies that directly gather location data, a number of

systems that gather location data as a side-effect have been introduced. Jha et al.

studied the use of electronic health records (electronic medical records that can be

shared between different facilities) around the world and in the United States [66, 67],

where 10 − 30% of ambulatory care physicians use an electronic health record (the

UK, Netherlands, Australia and New Zealand have EHR usage over 90%). Jha et al.

discuss the cost-reduction and patient-care benefits of health information technology

and EHR usage. Given the benefits, it seems quite likely that new technology solutions

will continue to be introduced into hospitals in the short-term within industrialized

nations. One benefit of EMR / EHR introduction is that access logs provide a sample

of healthcare worker location data, at least in some implementations. In particular,

the UIHC EMR implementation does record room-level location data in access logs.

While there are clear benefits to developing and deploying technologies like

RFID in healthcare settings, we are interested in using the data collected by EMR

systems or wearable sensors to develop a realistic simulator of a healthcare environ-

ment. RFID and other wearable devices are very appealing due to their ability to

capture a large and fine-grained sample of location data, however, it is very expensive

to retrofit an entire facility with the necessary infrastructure. Given our interest of

simulating a facility rather than a single unit within a facility, we focus on the sample
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of room-level location data made available by EMR systems.

In Section 1.1.1, we introduced the metric space in our model of UIHC. In

Section 2.2 we discuss previous work in spatial modeling, and then we discuss our

modeling efforts in the remainder of this chapter.

2.2 Previous Work

Because it is unethical to infect people to study the spread of disease within a

healthcare environment, physical experiments are problematic. In other fields where

this is the case (e.g., astronomy, economics), researchers must rely on naturally occur-

ring experiments to answer questions of interest. Here, we develop generative models

that can be used to make up realistic data to test, e.g., the efficacy of various infection

control policies.

A number of groups in various fields have been interested in identifying pat-

terns in samples of location data. Urban economics is concerned with the geographic

distribution of urban populations, and work in the field has modeled population den-

sity as falling off according to an exponential function of distance from the central

business district or other population center [47]. While the extension from single-

center to multi-center models is of interest, the assumption that center locations are

known a priori is problematic, and it is not clear how to guarantee properties of

aggregated activities of multiple models that share the same space.

Several groups have modeled population levels of wildlife using autologistic

models [6], linear models [6], gap analysis [37], fractal analysis, and correlated ran-
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dom walks [77]. Sharov et al. used exponential models fit by linear regression to

study distributions of gypsy moth populations [104]. Similar techniques are used to

model the spatial distribution of criminal activity such as assaults [48, 16]. These

wildlife models can predict wildlife populations on various tracts of land using sam-

ple population data, satellite imagery from which properties of the landscape can be

determined, etc. However, HCWs are not searching or foraging, their movement is on

a very different scale, their environment is fairly stable over time, and we are inter-

ested in saying something meaningful about the movement of individuals in addition

to aggregate population levels.

Physicists have used spatial clustering techniques to study the cosmological

distribution of dark matter holes [84], and Lévy flights have been used to model the

spatial distribution of wildlife and human travel [77, 15]. Brockmann et al. used

Lévy flights to model human travel on geographic scales based on the tracking of

bank notes across the United States [15]. In the case of dark matter holes, clustering

is determined by natural processes (e.g., gravitational attraction) the effects of which

the modeling attempts to capture. Again, it is not obvious how to use Lévy flights for

individuals and ensure that the proper amount of activity takes place in each room,

or that one could capture the idea that HCWs have areas in the hospital in which

they spend much of their time, with occasional forays into other areas of the hospital.

The recent need to analyze and mine large databases of spatial data has led to

research on a number of techniques for identifying clusters of spatially related points

within geographic data sets [42, 11, 71, 51]. This work has to make assumptions
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about the number and density of points in each cluster, and/or the shape of each

cluster. Similarly, facility location work from the operations research field [115, 91,

103, 105, 49] can also be used to identify clusters of points. These techniques could

be useful for determining or validating the number of clusters of activity that HCW

models should generate or exhibit.

2.3 Model

In this thesis, we use Backstrom et al.’s work modeling the spatial distribution

of search engine queries as the basis for a generative model for healthcare worker

movement [7]. For the reasons outlined in Section 1.1.2, we adapt this model model

with continuous, polynomial decay functions. While we implemented a number of

other decay functions (e.g., exponential, Gaussian), it was not obvious how to directly

compare models using different decay functions, and we focus on polynomial decay

functions as was done by Backstrom and Griffith [7, 47]. We leave a more careful

consideration of alternative decay functions for future work.

Our goal is to estimate the spatial distribution of each of the 14,595 HCWs

that appear at least once in our EMR login database. We associate with each HCW i

three parameters: a center ci (a room in the UIHC facility), a dispersion γi ≥ 0, and

an ownership constant, which says something about the percentage of the activity

near the HCW’s center that is attributable to that HCW. βi ≥ 0. Fix a time window

T (e.g., T might be a week) and assume that, for any room v in the UIHC facility,

the probability that a person chosen randomly from room v at a time instant in T is
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HCW 2

A B C D E

HCW 1

Figure 2.1: A simple 5-room hospital graph populated by two HCWs whose centers
are at nodes B and D respectively.

the HCW i is proportional to

βi ·
(

d(ci, v)
)

−γi
. (2.1)

Here, d(ci, v) is the distance (≥ 1) in the hospital metric space (see Section 1) between

nodes v and ci. For a room v, the HCWs who are most likely to be found in v are those

whose β parameter values are high, whose centers are near v, and whose dispersion

parameter values (i.e., γ) are small, implying a spatial probability density function

that has not fallen off too much before reaching v. While this models tells us for

each room v which HCW is more likely to be found at v, it does not directly provide

spatial distributions for the HCWs.

Room Probability of picking HCW 1 /
Probability of picking HCW 2

A 2γ

B 2γ

C 1
D 2−γ

E 2−γ

Table 2.1: If a HCW is drawn at random from rooms closer to HCW 1’s center than
HCW 2’s center, it is more likely to be HCW that is picked.
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The simple example (in Figure 2.1) clarifies this point. The figure shows a

“toy” hospital graph with 5 rooms. Suppose that this hospital graph is populated by

two HCWs, labeled 1 and 2, whose centers are nodes B and D respectively. Assume

that these two HCWs have identical values for β and γ (i.e., β1 = β2 and γ1 = γ2 = γ).

Then room C is equally likely to see HCWs 1 and 2, whereas room A is 2γ times more

likely to see HCW 1 than HCW 2 and, symmetrically, room E is 2γ times more likely

to see HCW 2 than HCW 1 (see Table 2.1) . Thus the model only posits for the two

HCWs, relative probabilities of occupying various rooms and does not require, for

example, HCW 1 to be more likely to be found in room A than in room E.

To obtain absolute probabilities of occupying each room, we make two as-

sumptions. First, we assume that each HCW is located somewhere in the hospital,

and thus we scale the probabilities the HCW is in each room such that they sum to

1. Second, we assume that each room in the hospital has a static “attractiveness”,

which determines the total amount of activity that should be generated in that room

across all HCWs. Attractiveness may model, for example, the presence of commonly

used equipment, a room with a patient as opposed to one without, or a private office

as opposed to a shared workspace. We associate with each room a parameter, αv,

such that the generated activity for all users in room v sums to the attractiveness.

The spatial probability distribution of a HCW i over all the UIHC facility rooms is

obtained by normalizing the probability decay function values and the α values.

{αv · βi(d(ci, v))
−γi | v is a node in the hospital graph}. (2.2)
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Let si be the normalizing factor for HCW i, i.e., si is a value such that

si · βi ·
∑

v

αv · (d(ci, v))
−γi = 1. (2.3)

Given these spatial distributions for the HCWs, the expected number of HCWs in a

room v at any time instant is

αv

∑

i

si · βi · d(ci, v)
−γi , (2.4)

where the sum is over all HCWs i.

As a special case, if we assume that all of the αv’s are identical then the

spatial distribution of each HCW i is “nicely” shaped and completely determined by

the parameters ci, βi, and γi.

2.4 Algorithm

Our algorithm takes as input timestamped location data (i.e., EMR login

data in our case), and our hospital graph, and returns a maximum-likelihood center

location, ownership constant, and dispersion constant for each HCW. That is, our

algorithm finds and returns the center that is most likely to generate the observed

data. In our implementation, we use the location data in an aggregated form to

calculate attractiveness, but other implementations could either take attractiveness

values as parameters or learn them during the maximum-likelihood estimation.

For a given HCW i, we use a maximum-likelihood approach to find a center

ci, dispersion γi, and constant βi. To do this, we first partition the set of EMR logins

into two subsets: Li, consisting of only the logins associated with HCW i and Li,
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denoting the complement, i.e., the set of logins with which HCW i is not associated.

For each login ℓ, let loc(ℓ) denote the location in the UIHC facility at which the login

occurs. Then the log of the likelihood that the EMR login records are obtained by

sampling from from the distribution of HCWs in each room is:

LLi(c, β, γ) :=
∑

ℓ∈Li

log
(

β · dist(c, loc(ℓ))−γ
)

(2.5)

+
∑

l∈Li

log
(

1− β · dist(c, loc(ℓ))−γ
)

.

Our problem is to find values of c, β, and γ that maximize this function. These

maximizing values are the maximum likelihood estimators of the model parameters

for HCW i. Note that we work with log-likelihood instead of likelihood because

multiplication of large numbers of small probabilities quickly leads to underflow in

practice.

Backstrom et al. [7] show that for a fixed center c, the function LLi(c, β, γ)

has exactly one local maximum over its 2-dimensional parameter space 0 ≤ β ≤ 1

and γ ≥ 0. Thus, for a given room c, optimal values of β and γ can be found by any

one of various local continuous maximization techniques; we have implemented the

well-known Nelder-Mead local optimization algorithm [85]. To maximize LLi(c, β, γ)

we can simply do a brute-force search, calling the Nelder-Mead algorithm for each

candidate center c. However, this approach is computationally problematic because

there are roughly 19,000 candidate centers (i.e., rooms in the hospital) and LLi(c, β, γ)

has to be maximized separately for about 15,000 HCWs. This implies more than a

quarter billion calls to the Nelder-Mead subroutine. Furthermore, we want to estimate
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spatial distributions for HCWs from various subsets of login records (e.g., separately

for each month, separately for night and day, etc.) and this requires having to repeat

the entire computation 15-20 times.

We employ two tricks to significantly reduce the running time of our compu-

tation. We first preprocess the login records, employing a data reduction technique

which groups or buckets logins with unique (HCW, location) pairs. For example,

we compress two EMR logins, one for 2 seconds and one for 3 seconds, from Room

4200 by the HCW with userID 22 to be (5, 4200, 22). The first entry, 5, refers to

the total amount of login time of HCW 22 into Room 4200. In a second step, after

fixing a candidate center c, we bin rooms at equal distance from the center c into

one compressed bin just before the call the Nelder-Mead subroutine. Note that this

second level of data reduction is made possible by the fact that there are a limited

number of discrete distances in our graph-theoretic model. These two data reduction

steps of the logins significantly reduce, by at least an order of magnitude, the number

of logarithm and exponentiation operations in practice.

Figure 2.2 shows how well the best model located in each room fits the observed

EMR activity for a given physician’s nurse assistant. The brute force search needs

to consider locating the center in every room in the hospital, but note that the good

solutions are are clustered in one area of the hospital.

Our first attempt at an improved algorithm, suggested by a discussion in

[7], uses a search pruning technique to significantly reduce the number of candidate

centers we need to consider. The technique is similar in spirit to hierarchical clustering
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UIHC: Floor 1

Figure 2.2: This figure shows the quality of fit for the best models located in each
room of the first floor for a physician’s nurse assistant. The best overall center is
located in the room at the center of the red circle, and the quality of fit ranges from
poor (blue) to the best (red). These models are trained using EMR data from March,
2007.
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used elsewhere [68, 121, 26], although we cluster arbitrarily rather than to maximize

some objective function. Our pruning algorithm starts with a single cluster consisting

of the entire hospital graph. An arbitrary node in the graph is taken to be the cluster

center and the radius of the cluster is bounded above by the diameter of the hospital

graph. In a typical iteration, the algorithm considers a collection of clusters all of

which have radii bounded above by ri. The goal in this iteration is to partition each

cluster (if necessary) into clusters of radius at most ri/2. For any cluster C that has

radius r such that ri/2 < r ≤ ri, we repeatedly pick an arbitrary node v in C, make

v a cluster center of a cluster C ′ and assign to the cluster C ′ all nodes in C that are

at a distance at most ri/2 from v. We then delete C ′ from C and continue until C

becomes empty.

This hierarchy of clusters can be naturally viewed as a tree with the cluster

consisting of the entire graph at the root and with the leaves being singleton clusters

of radius 0. A greedy search of this tree essentially prunes those subtrees where the

root of the subtree fails to meet some solution quality criteria (i.e., the best model

for a HCW using the pruned node as the center location is dominated by one of its

siblings. Note that this tree has height O(log(diam)), where diam is the diameter of

the hospital graph.

As a result of this pruning, we examine only 3% of the rooms in the hospital

on average per HCW, though use of this heuristic sacrifices optimality. Figure 2.3

shows the results of the search using this clustering heuristic. Note that in the case

of this particular Physician’s Nurse Assistant, even though the log-likelihood in each
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room shown in Figure 2.2 appears to be very smooth, the heuristic fails to find the

optimal model.

In our work, we take advantage of the fact that the distances in the hospital

graph form an approximate metric to prune the search space of candidate centers

without sacrificing optimality. Given an upper-bound r on the distance between the

center c of a cluster and any other node in the cluster, it possible to obtain an upper-

bound on the maximum value of LLi(v, β, γ) for any room v in the cluster. The

intuition here is that we can take the compressed login activity for the HCW under

consideration, move all of that HCW’s logins r weighted-hops closer to c, and all other

logins r weighted-hops away from c. Finding the log-likelihood with these modified

login sets will give the best log-likelihood possible for any potential center within r

hops of c. Consider the following 4-parameter function:

MLLi(c, β, γ, r) :=
∑

ℓ∈Li

log
(

β · (d(c, loc(ℓ))− r)−γ
)

+ (2.6)

∑

ℓ∈Li

log
(

1− β · (d(c, loc(ℓ)) + r)−γ
)

Given a cluster C with cluster center c and radius r, we can use the Nelder-Mead

algorithm to solve the continuous optimization problem to find values of β and γ that

maximize MLLi(c, β, γ, r). Our claim, expressed precisely in the following theorem,

is that the maximum value of MLLi(c, β, γ, r) (for fixed c and r) is an upper bound

on the maximum value of LLi(v, β, γ) for any node v in cluster C.

Theorem 1 Fix a node c and let r > 0. For any node v, if d(c, v) ≤ r then

MLLi(c, βc, γc, r) ≥ LLi(v, βv, γv) where βc and γc are values that maximize
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UIHC: Floor 1

Figure 2.3: This figure shows the quality of fit for the best models located in rooms
that the clustering-based heuristic search considers as potential centers for a Physi-
cian’s Nurse Assistant. The larger discs indicate evaluation of a cluster rather than
a single room. The best overall center considered by the algorithm is located in the
room at the center of the red circle, and the quality of fit ranges from poor (blue) to
the best (red). These models are trained on EMR data from March, 2007. Note that
this heuristic does not find the optimal model in this instance.
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MLLi(c, β, γ, r) and βv and γv are values that maximize LLi(v, β, γ).

Proof 1 (Proof of Theorem 1 by contradiction) Assume that for some v such

that d(c, v) ≤ r:

MLLi(c, βc, γc, r) < LLi(v, βv, γv)

where βc, γc, βv and γv maximum their respective log-likelihoods. Then,

MLLi(c, β, γ, r) < LLi(v, β, γ)

where β = βv and γ = γv.

Since d(a, b) ≥ 1 ∀a, b either

∑

l∈L

log(β · (d(c, l)− r)−γ) <
∑

l∈L

log(β · d(v, l)−γ)

or

∑

l∈L

log(1− β · (d(c, l) + r)−γ) <
∑

l∈L

log(1− β · d(v, l)−γ)

Assume the former is true. That implies for some l ∈ L d(c, l) − r > d(v, l).

This in turn implies that max(1, d(c, l)− r) > max(1, d(v, l)) which implies that

d(c, l)− r > d(v, l)

However, since d(c, v) ≤ r, and d(c, l) ≤ d(c, v) + d(v, l):

d(c, l)− d(v, l) ≤ d(c, v) ≤ r d(c, l)− d(v, l) > r

This is a contradiction. Assuming the latter inequality is true instead leads

to a similar contradiction. Therefore the original assumption does not hold. MCLL

upper-bounds the log-likelihood of any room in a cluster.
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Theorem 1 allows us to use a branch-and-bound approach to process the

hierarchy of clusters while pruning away clusters that are guaranteed not to contain

a “good enough” center. In a typical step, we process a cluster C somewhere in the

cluster tree. Suppose that C has cluster center c and radius r. We compute the

maximum value of MLLi(c, β, γ, r) over values of β and γ by making a call to the

Nelder-Mead algorithm. If this value is no greater than the current best log-likelihood

seen by the algorithm, we can stop searching this cluster immediately. Otherwise,

we compute the maximum value of LLi(c, β, γ) and mark the nodes in the cluster for

further processing.

Once the c, β, and γ values have been found for all HCWs, the attractiveness

parameter αv can be calculated for each node v in the hospital. While there are

a number of ways to calculate attractiveness for rooms (e.g., based on whether the

room is an office, or occupied patient bedroom), to calculate the attractiveness value

we first calculate the total number of seconds of login activity in each room that has

an EMR terminal. Let M be the set of all the rooms with an EMR terminal in the

hospital and for each u ∈M let Tu be the total number of seconds any HCW is logged

into room u. Note that there are many rooms in the hospital with no EMR terminal,

and thus M is a proper subset of the set of all rooms in the hospital. For each room

v in the hospital we then calculate a smoothed activity level T ′

v which reduces the

effect of outliers and assigns activity values to rooms with no EMR terminals. For

each room v in the hospital we set

T ′

v = sv
∑

u∈M

Tu · d(u, v)
−δ
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Algorithm min calls mean calls max calls
Brute Force 18961 18961 18961
Heuristic 222 675 1172
Improved 89 658 6185

Table 2.2: The brute-force search uses far more calls to Nelder-Mead than the heuristic
or the improved algorithm.

The heuristic actually uses slightly more calls to Nelder-Mead on average than our improved

algorithm, though our improved algorithm is not as consistent.

where sv is a scaling factor chosen so that sv ·
∑

u d(u, v)
−δ = 1. δ is a constant that

sets the level of decay on the smoothing. For our experiments we found δ = 6 resulted

in minimal amounts of activity spilling over from areas of the hospital known to be

in use at a particular time to areas known to be closed. The attractiveness value for

each room v can then be found by solving for αv in the following equation

αv ·
∑

i

βi · d(ci, v)
−γi = T ′

v (2.7)

where the summation is over all HCWs i. Figure 2.2 shows the number of seconds of

login in each room during one shift in the month of February, 2007 and the smoothed

attractiveness values.

Figure 2.5 shows the log-likelihoods for the rooms searched by our improved

algorithm when finding the best center for our example HCW. In this particular case,

the improved algorithm has to search more rooms than the heuristic, but, unlike the

heuristic, it returns the optimal solution in this and every instance. As shown in Table

2.2, the heuristic and improved algorithm both require far fewer calls to Nelder-Mead
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Figure 2.4: These graphics show a comparison between the observed login data and
attractiveness in each room on the 3rd floor of UIHC. The graphic on the left shows
the number of seconds of HCW logins in each room, with darker dots indicating
more activity. The graphic on the right shows the attractiveness of each room after
smoothing is performed. Smoothed attractiveness values range from 0.4 to 1, 682, 801
with a mean of 65, 510 and a median of 33, 278. Rooms with attractiveness values
near 0 may have terminals that are not used for accessing patient data, and rooms
with attractiveness values over 1 million are likely to contain one or more HCWs at
any given time. It seems reasonable that some areas (e.g., patient care areas) have
a lot of activity, while many or most rooms (offices, closets, mechanical equipment
rooms, etc.) are actually empty much of the day.
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UIHC: Floor 1

Figure 2.5: This figure shows the quality of fit for models searched by our improved
algorithm. There is a circle in each room considered as a candidate center by our
algorithm, with the best overall center located in the room at the center of the red
circle. The quality of fit ranges from poor (blue) to the best (red). These models are
based on EMR data from March, 2007. Note that this algorithm does not search all
the rooms in the facility, but still zeros in on the optimal model.
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than the brute-force search algorithm. While the improved algorithm uses slightly

fewer calls on average, there are cases where it uses significantly more calls than the

heuristic.

2.5 Multi-center Extension

While these single-center models do a reasonable job of fitting the observed

data, some job types may be better modeled as having multiple centers, each of which

makes some contribution to a healthcare worker’s stationary probability distribution.

Consider a physician who spends some time in a departmental office, and some time

on an inpatient unit. A single-center model would have to attempt to find one center

location and set of decay parameters that accounts for activity in both locations.

2.5.1 Motivation for Multi-center Models

In Section 2.5.3.2 we will discuss one way to decide which HCWs are best

modeled with single-center models and which are best modeled with multi-center

models. Before we present our assumptions and model for the multi-center problem,

we present some visualizations of EMR activity for several healthcare workers that

supports the intuition that there are some individuals or job types in the hospital

better modeled by multi-center models. Keep in mind when examining the figures

in this section that the HCWs whose EMR activity are being visualized are not

necessarily typical users. A sample of HCWs’ activities were checked during a one

month period for “interestingness”.

First, consider Figures 2.6-2.9. For each of the HCWs shown, all EMR activity
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occurs on a single floor, typically within a visually apparent cluster. Figures 2.6 and

2.7 show HCWs that seem very well suited to a single-center model, while Figures

2.8 and 2.9 show HCWs for which a single-center model is probably appropriate,

though the observed activity patterns may be a little more difficult for a single-center

model to fit well. In all four cases, activity is tightly clustered.

Contrast these examples with Figures 2.10 and 2.11, where multi-center models

seem more appropriate. In each case, there are two clusters of observed EMR activity

each in different units, or on different floors.

2.5.2 Multi-center Models

Note that some of the previous work on identifying spatial distributions of

wildlife, people, and search engine queries did have extensions to multi-center models.

Of particular interest, Backstrom et al. [7] considered that some search engine queries

could have multiple centers of interest. For example, queries for “Delta Airlines”

might be expected to cluster around Delta’s hub cities. Griffith also discusses multi-

center models of population density in his work in modeling urban populations [47].

The extension of multiple centers to models of HCWs requires deciding how

each of the centers should influence activity in each room of the hospital. We focus

two simple options, though other options (e.g., weighting contribution from each

center) exist. (1) disjoint multi-center models, in which activity in each room is the

maximum of the activities the various centers assign to that room. (2) additive multi-

center models, in which activity in each room is determined by summing the activity
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UIHC: Floor 5

Figure 2.6: A Staff Nurse II with EMR activity restricted to a unit on the 5th floor
of UIHC.



www.manaraa.com

47

UIHC: Floor 2

Figure 2.7: A Nurse Assistant with EMR activity restricted to a unit on the 2nd floor
of UIHC.
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UIHC: Floor 0

Figure 2.8: A Staff Nurse II with EMR activity restricted to a unit on the subground
floor of UIHC.
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UIHC: Floor 5

Figure 2.9: A Staff Nurse II with EMR activity restricted to a unit on the 5th floor
of UIHC.
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UIHC: Floor 0 UIHC: Floor 1

Figure 2.10: An Advance Reg. Nurse Practitioner with EMR activity on the lower
two levels of the UIHC facility. Note that when forced to use a single-center model,
the algorithm picks a center in the cluster on the ground floor. This suggests that
generated activity would be far less than expected in the cluster on the other floor
and/or generate more activity than expected in rooms along the shortest path between
the two clusters. A multi-center model would be able to generate activity in both
clusters without generating any unwanted activity between the two clusters.



www.manaraa.com

51

UIHC: Floor 4

Figure 2.11: A HCW with an unknown job title has EMR activity only on one floor,
but it appears in distinct clusters in two different units. A single-center model for
this HCW would be usable, but a multi-center model would do a better job of fitting
the observed data. Note that this example is also illustrative of one of the benefits
of using distances on top of a graph-theoretic model rather than just using Euclidean
distance: the realistic walking distance (shortest weighted path distance) between
some points in the two clusters is over 50% longer than the straight-line distance.
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generated by all centers.

More formally, Let Ci be a set of centers of the form < cj, βj , γj > for HCW

i. Then, for the class of disjoint multi-center models, we assume the probability that

an HCW i picked from some room v is proportional to

pdisj = max
<cj ,βj ,γj>∈Ci

βj · d(cj, v)
−γj . (2.8)

In additive multi-center models, the probability that an HCW i picked from some

room v is proportional to

padd =
∑

<cj ,βj ,γj>∈Ci

βj · d(cj, v)
−γj . (2.9)

The two classes of models are very similar in general, but it is worth considering

where they differ. For a 2-center model, imagine a topological map with concentric

rings around each center for each discrete value of the decay function for that center.

Consider a room at the intersection of two identically labeled rings. Without loss of

generality, assume that the rings only intersect in one room. In the additive model,

that room will have a higher decay function value than any other room on either of

the two rings, meaning that the modeled probability that a HCW chosen in this room

is HCW i is greater than in any other room on either ring. In the disjoint model,

however, the modeled probability is the same everywhere on the two rings.

The previous work on search engine queries uses disjoint multi-center models

[7], while the work on urban population density uses additive multi-center models

[47]. In our own work, we choose to interpret models as being additive. It seems

natural and likely that a HCW would have somewhat increased activity levels in the
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area geographically between two clusters of activity, whether or not such increased

activity shows up in our sample of location data.

2.5.2.1 Updated Equations

Keep in mind that it is quite possible that the same model will do a similarly

good job fitting the observed data when interpreted as a disjoint and an additive

model. While we focus on the additive class of models, it is generally straightfor-

ward to transform the additive model description, various probability functions, and

algorithms into their disjoint analogs.

The spatial probability distribution of a HCW i over all the UIHC facility

rooms is obtained by normalizing the values

{αv ·
∑

<cj ,βj ,γj>∈Ci

βj · d(cj, v)
−γj | v is a node in the hospital graph}. (2.10)

Let si be the normalizing factor for HCW i, i.e., si is a value such that

si ·
∑

v

αv

∑

<cj ,βj ,γj>∈Ci

βj · d(cj, v)
−γj = 1. (2.11)

Given these spatial distributions for the HCWs, the expected number of HCWs in a

room v at any time instant is

αv

∑

i

si ·
∑

<cj ,βj ,γj>∈Ci

βj · d(cj, v)
−γj , (2.12)

where the outer sum is over all HCWs i. Then the log of the likelihood that the EMR

login records are obtained by sampling from HCW i’s assumed distribution is:
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MCLLa :=
∑

l∈S

[

log
(

∑

<cj ,βj ,γj>∈Ci

βj · d(cj, rl)
−γj

)]

(2.13)

+
∑

l /∈S

[

log
(

1−
∑

<cj ,βj ,γj>∈Ci

βj · d(cj, rl)
−γj

)]

2.5.3 Multi-center Algorithms

While Backstrom et al. proposed using a heuristic to find optimal single-

center models for search engine queries, we presented an algorithm in Section 2.4 that

is both fast in practice and guaranteed to return the optimal single-center model.

Unfortunately, the solution space for multi-center models is much more complex.

Recall that using gradient ascent to find the best β, γ pair for a fixed HCW and center

location relied upon the fact that the single-center log-likelihood function (Equation

2.5) is unimodal (i.e., a unique local maximum) for polynomial decay functions.

We found that the log-likelihood functions for both the additive and disjoint

class of multi-center models are multimodal (i.e., they have multiple local maxima)

even in fairly trivial examples, and thus even if the placement of the centers in the

optimal multi-center model is known a priori we cannot use gradient ascent to find

the globally maximal decay parameters. Empirical verification was done by fixing two

centers for a HCW and running the Nelder-Mead Simplex algorithm with observed

EMR activity repeatedly with different initial values for the decay parameters. While,

as expected, the same (optimal) solution is returned every time for single-center

models, with multi-center models this procedure returns a variety of very different

solutions, even in the 2-center case. The procedure was repeated over a number of
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HCWs, and to minimize the possibility of software bugs, we used a standard library

version of Nelder-Mead [69] rather than the more efficient custom C implementation

that we use in practice.

In addition to this empirical experiment, we present an analytic proof of mul-

timodality for the additive class of models. (1) We model a simple five room facility

like the one pictured in Figure 2.1. (2) We place two HCWs in our facility, the first

having two logins, and the second having one. (3) We pick two centers for the first

HCW and find the log-likelihood function for that instance. (4) We find the Hessian

of the log-likelihood function, and the eigenvector of the matrix. (5) We fix three

of the four decay parameters, and run a local search to maximize one of the eigen-

values. (6) We show that one of the eigenvalues is positive for some choice of decay

parameters. This implies that the Hessian is not negative semi-definite, which in turn

implies that the log-likelihood function is non-concave. While our full proof is too

long to reproduce in its entirety, Appendix 5.1.0.4.1 lists the Mathematica commands

necessary to reproduce our results.

As this empirical and analytic work shows, it is impossible to guarantee that

in general Nelder-Mead will find the best decay parameters for any pair of centers

even when given the center locations a priori. While it would be possible to try

all combinations of β and γ to some arbitrary level of precision and use the best

values, this becomes exponentially more expensive as required numerical precision is

increased. We thus resort to heuristics to identify good multi-center models.

We consider three heuristics for finding good multi-center models for HCWs,
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input : HCW i, number of centers k, HospitalGraph, and location
data Loc

output: A multi-center model for HCW i

1 bestCntrs ←RandCntrs(k);
2 for iter ← 1 to MaxIter do
3 cntrs ←RandCntrs(k);
4 lastCntrs ← ∅;
5 while lastCntrs ! = cntrs do
6 lastCntrs ←cntrs;
7 // Reoptimize each center to cover entire facility

8 for j ← 1 to k do
9 cntrs[j]←NelderMead(HospitalGraph, Loc, cntrs [j]);

10 roomProbs[j]←ProbByRoom(HospitalGraph, cntrs[j]);

11 end
12 // Redo the cluster assignments

13 reset cluster assignments ;
14 for u ∈ HospitalGraph do
15 j ←argmax(roomProbs[]);
16 append u to cluster[j] ;

17 end
18 // Reoptmize each center to cover its cluster

19 for j ← 1 to k do
20 cntrs[j]←ReoptimizeInCluster(cntrs[j], cluster[j], Loc);
21 end
22 if MultEval(cntrs) > MultEval(bestCntrs) then
23 bestCntrs ←cntrs;
24 end

25 end

26 end
27 return bestCntrs;

Algorithm 1: k-clustering heuristic: see text for more details
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based on the general idea of reducing multi-center problems to a number of 1-center

problems for which we have efficient algorithms. The first heuristic is based on the

discussion in Backstrom et al. [7]. We make the assumption of disjoint influence only

for model training, and interpret the model as additive during the generation phase.

This assumption lends itself to the k-clustering based heuristic seen in Algorithm

1. The function RandCntrs(k) returns a list of k centers with random locations

and arbitrary β and γ values, while the NelderMead() call uses Nelder-Mead to find

the optimal β and γ values for a center c located in a specified room. The Prob-

ByRoom(Graph, cntr) function takes our hospital graph and a single-center model

and returns the probability that a HCW picked from each room is the HCW under

consideration. The ReoptimizeInCluster(cntr, subgraph, logins) function solves the

single-center subproblem based in the cluster rather than the entire facility, while the

MultEval(cntrs) function returns the log-likelihood of a given multi-center model.

The algorithm repeatedly independently optimizes a set of centers based on

observed activity in the entire facility as if each was the only center, partitions the

hospital based on which center assigns the highest probability to each room, and

chooses a new center within each cluster based only on observed activity within that

cluster. The best solution seen after repeating this many times is chosen as the model.

Next, we consider the greedy heuristic shown in Algorithm 2, which uses a

single-center algorithm (our optimal algorithm) as a subroutine. The idea is that

initially when finding centers for some HCW, all login data are unaccounted for. As

centers are added to the model, they will generate some activity in rooms for which
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input : HCW i, stopping criteria StopCrit, HospitalGraph, and
login data Loc

output: A multi-center model for HCW i

1 // Initially, all observed logins are unaccounted for

2 // U is the set of unaccounted for logins

3 U ←Copy(Logins);
4 cntrs ← ∅;
5 while not CriteriaMet(StopCrit) do
6 // Use a single-center algorithm as a subroutine

7 // to find the best center for just the

8 // logins that are unaccounted for

9 center ←GetSingleCenter(HospitalGraph,U);
10 append center to cntrs ;
11 T ←ExpectedTimeByRoom(HospitalGraph,U,center);
12 // Subtract logins accounted for by this new center

13 U ←RemoveLogins(U,T);

14 end
15 // Verify cntrs is locally maximal

16 // This could be done after each iteration, but is

expensive

17 NelderMead(HospitalGraph,Logins,cntrs);
18 return cntrs;

Algorithm 2: greedy heuristic
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the HCW under consideration has logins. Such activity “accounts” for some of the un-

accounted for login data, and an appropriate amount of time is subtracted away from

the unaccounted for data. In our implementation of ExpectedTimeByRoom(Graph,

logins, cntr), we calculate the probability that a HCW picked at random from each

room is the HCW under consideration, and multiple this value by the attractiveness

of each of those rooms giving an estimate of the amount of time the HCW will spend

in that room. The RemoveLogins(logins, expectedTime) function simply sees if there

are any unaccounted for logins remaining that an element of expectedTime accounts

for and removes those logins if so. We repeatedly find the best single-center model

to account for the remaining login data, add that to the list of centers, and remove

login data that is accounted for by that new center.

Although we showed earlier that gradient ascent methods are not guaranteed to

find the globally optimal model, we do call Nelder-Mead immediately before returning

a model to see if changes to decay parameters might yield a slightly better model

(i.e., we seek a nearby local optima). Note that the stopping criteria for this heuristic

can be set such that it will stop after k centers have been found, or it can use other

stopping criteria to choose an appropriate k for each HCW individually. For example,

the algorithm could terminate after the improvement in fit for the model after adding

another center falls below some threshold, or after some percentage of the HCW’s

activity is accounted for. In practice, we use a mix of fixed-k models and free-k

models where k is allowed to increase until 95% of activity has been accounted for,

or k increases to the number of unique rooms HCW i logs into in the observed data.
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input : HCW i, stopping criteria StopCrit, HospitalGraph, and
login data Loc

output: A multi-center model for HCW i

1 // Initially, all login data are unaccounted for

2 U ←Copy(Loc);
3 cntrs ← ∅;
4 while not CriteriaMet(StopCrit) do
5 if cntrs contains 2 or more centers then
6 for j ← 1 to Length(cntrs) do
7 // Remove jth center from the list of centers

8 RemoveCenter(cntrs, j);
9 // Calculate activity unaccounted for by the new

list of centers

10 U ←RecalcUnaccounted(Loc, cntrs);
11 center ←GetSingleCenter(HospitalGraph,U);
12 // Insert new center at index j
13 InsertCenter(cntrs, j, center);

14 end

15 end
16 center ←GetSingleCenter(HospitalGraph,U);
17 append center to cntrs ;
18 // Subtract logins accounted for by this new center

19 T ←ExpectedTimeByRoom(HospitalGraph,U,center);
20 U ←RemoveLogins(U,T);

21 end
22 // Verify cntrs is locally maximal

23 // This could be done after each iteration, but is

expensive

24 NelderMead(HospitalGraph,Loc,cntrs);
25 return cntrs;

Algorithm 3: replacement heuristic
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The fact that the first center is chosen in isolation is a serious limitation of

our greedy heuristic (and greedy heuristics in general), which we address in a third

heuristic. Consider what happens when the greedy heuristic is placing the kth center

(line 5). Despite the fact that the first k − 1 centers generally account for most of

the activity for the HCW, the algorithm only has complete information about the

placement of other centers when placing that kth center. This means that the decay

parameters and the location for the first k−1 centers were placed to account for all of

the remaining activity at the expense of accounting for nearby activity. Meanwhile,

the later centers will do a much better job of accounting for activity in those other

areas anyway. To address this concern, the replacement heuristic Algorithm 3 adds

an additional step (lines 5-11) which adjusts each of the existing centers before each

additional center is added.

There are some options for tuning the replacement heuristic, e.g., when to do

the replacement, how many times to repeat the replacement step, placing restrictions

on the location of the new center, how unaccounted for activity is updated, etc., but

based on comparing the quality of multi-center models for a sample of HCWs this

seemed a good compromise between the fit of the models and model training time.

One final note, despite the lack of an optimality guarantee, once we have fixed the

final set of centers and some reasonable decay parameters, we run the model through

Nelder-Mead to see if we are already at a local optimum or if the decay parameters

can be adjusted slightly to improve the model.
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2.5.3.1 Comparing Heuristics

The replacement heuristic is nearly always better than the greedy heuristic.

To see why this is so, consider that at the point that the algorithms diverge, the

replacement heuristic is replacing some center with a new center that, together with

the other centers, very likely does a better job of fitting the observed data. Otherwise,

the algorithm would have just picked the original center again. See Figure 2.12 for a

comparison of the greedy heuristic with and without replacement. Note that points

on the line indicate that the two heuristics returned a multi-center model with the

same log-likelihood of generating the observed data. Points above the line indicate

the replacement heuristic outperforms the greedy heuristic. Because of the clear

advantages of the replacement heuristic, in the remainder of this section we focus on

comparing the k-clustering heuristic with the replacement heuristic.

While the greedy heuristic was initially developed to have something to com-

pare the k-clustering heuristic with, it turns out to be at least 20 times faster in

practice. Given this speed improvement, we might prefer the replacement heuristic

over the k-clustering heuristic even if the models were of somewhat lower quality.

However, Figure 2.13 shows that the replacement heuristic consistently outperforms

the k-clustering based heuristic. A paired, one-tailed Wilcoxon rank sum test confirms

statistical significance (p < 2.2e− 16).

It is worth mentioning that both disjoint and additive multi-center models

found by the greedy heuristics are in rare cases worse than single-center models. In

the greedy and replacement heuristics, decay parameters for each center are optimized
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Greedy v. Replacment Heuristic Quality of Fit to Observed Data for Mar, 2007
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Points above the line indicate superior performance of the replacement heuristic.

Figure 2.12: A comparison between the greedy heuristic with and without replacement
where points above the line show that the replacement heuristic outperforms the
greedy heuristic for a particular HCW. There is a point in the plot for each of the
6,078 HCWs that uses the EMR system between 7am and 12pm during the month of
March, 2007. Models were trained using data from that same month.

Clustering v. Replacment Heuristic Quality of Fit to Observed Data for Mar, 2007

Clustering Heuristic Quality of Fit
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Points above the line indicate superior performance of the replacement heuristic.

Figure 2.13: A comparison between the replacement heuristic and k-clustering heuris-
tic where points above the line show that the replacement heuristic outperforms the
k-clustering heuristic for a particular HCW. There is a point in the plot for each of
the 6826 HCWs that access the EMR system any time during the month of March,
2007. Notice that in many cases the points are far about the line, indicating a vastly
better model produced by the replacement heuristic for that HCW.
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independently prior to returning the final model, and this lack of information sharing

between centers is to blame. In the case of disjoint models, a second model is placed

assuming that activity it generates will actually result in increased activity for the

user. It will generate activity in some rooms where this user should have no activity

in order to reach some rooms that in the end won’t end up generating activity in

anyway. On the other hand, the additive models are adding centers to reach more

of the HCWs login areas. While contributions to each room do add up, so do the

additional centers’ contributions to rooms the HCW does not appear in. Further,

even in rooms the HCW does spend a lot of time in, there’s a tendency to over-cover

rooms. Especially in cases where the HCW spends a lot of time in a small cluster of

room, but other HCWs also spend a little time there, over-covering will be severely

penalized by the log-likelihood function since p will approach 1. However, in practice

these conditions only cause problems when the heuristics pick two centers within

a couple hops of each other: indeed nearly all cases where multi-center models are

worse than single-center models occur when the two centers are within 2 weighted

hops. This occurs infrequently (less than 0.1% of the models), and we take it as an

indication that the HCW should just use a single-center model. Note that right before

the call to Nelder-Mead at the end of the greedy heuristics, an order of magnitude

more (1− 4%) multi-center models are actually worse at fitting observed data than

their single-center counterparts, which underscores the importance of that step.



www.manaraa.com

65

2.5.3.2 Identifying Candidates for Multi-center Models

Now that we have identified which heuristic we will use for finding multi-center

models for HCWs, we move on to discussing how to decide which HCWs or classes

of HCWs should use single-center models and which should use multi-center models.

One option is to always use the replacement heuristic to determine the number

of centers for each HCW. Setting the threshold of required EMR activity that must

be accounted for to 95% generates single-center models for about 1/3 of HCWs,

with the rest having multi-center models. By choosing appropriate stopping criteria,

it is possible to make the decision at the individual level without additional work.

However, there is a risk of over-fitting the data; in the extreme case e.g., using one

center for each room a HCW logs into.

We consider an alternative approach: is it possible to aggregate individuals

by their job title and decide at a higher level which groups of HCWs should use

single-center or multi-center models? With the help of a physician with knowledge

of healthcare operations, we have aggregated the 477 job titles used by our 14, 595

HCWs into 36 job classes (for example, job titles such as Nurse Managers, Staff Nurse

I, and Staff Nurse II are all aggregated into the Nurse job class). We then focus on

identifying classes of HCWs for which single-center models are sufficient, and which

are better suited to multi-center models. We run the static greedy heuristic with k = 2

as the stopping criteria. We then compare the fit of the model using just the first

center returned with the fit of the model using both centers. We use this approach

because we only need to keep one set of models around to do the comparison, and
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because we are looking for dramatic improvements in log-likelihood (not something

subtle). Figure 2.14 shows the results of this comparison. We group the job classes

into three groups. The job classes in the blue circle group have both a high mean

and a high median improvement when moving to a 2-center model; these are clear

candidates for multi-center models. The job classes in the black diamond group have

low means and low median improvements when moving to a 2-center model; HCWs

within these classes will be restricted to single-center models. The last group of job

classes, the red square group, is ambiguous. A low median and high mean indicates

that some individuals see a vast improvement when switching to multi-center models,

but most do not. Note that we see the expected job classes in each group: Physician

and Resident are in the multi-center group, while Unit Clerk, Administrator, and

those working in laboratories get single centers. The group that needs further study

includes Therapist, Social Worker and a group categorized as Miscellaneous Patient

Care. At this point, we limit our multi-center modeling efforts to 2-center models.

For those job classes requiring further study, we drill down to the level of

position. The results, shown in Figure 2.15, indicate fellows and clinical professors

should use multi-center models, while secretaries and imaging technicians should use

single-center models. While there are still some positions in the ambiguous red square

group, because more than half of the members see no improvement moving to multi-

center models and the groups are already small, we assign these positions to the

single-center group rather than drill down further. Based on this analysis, about 20%

of HCWs use multi-center models when doing agenda generation for simulation.
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Figure 2.14: The improvement in fitting observed data when switching from single-
center to 2-center models aggregated at the job class level. The blue circles are
job classes which will use multi-center models, the red squares are job classes which
require further review at the position level, and the black diamonds are job classes
which will use single-center models. The blue circle group includes job classes such
as Physicians, Residents and Pharmacists. The red square group includes the Misc.
Patient Care Clerk, Therapists and Social Worker classes. The black diamond group
includes Administration, Laboratory, Information Technology and Unit Clerk job
classes.

Physician Center in Office Center on Clinic / Unit
1 Faculty Office Main Operating Room
2 Administrative Staff Hem/Onc Physician Workroom
3 Cardiovascular Diseases Heart Clinic Physician Workroom
4 Internal Medicine Rheumatology Clinic Exam Room

Table 2.3: Physicians’ centers appear in the expected places.

In many cases where we have complete information about how a room is used, a physician will

have a center in a clinic or on an inpatient care unit and one in an office.
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Figure 2.15: The improvement in fitting observed data when switching from single-
center to 2-center models including aggregation at the position. Job classes and
positions represented by blue circles use multi-center models, and the rest use single-
center models. Note that there are a handful of positions which have high means and
low medians, but rather than drill down to the individual level we assume single-center
models will suffice.

When motivating the use of multi-center models, we pointed in particular to

physicians, and we do see what seem to be reasonable pairs of centers for physicians.

Figure 2.3 shows a small sample of the roughly 50% of physicians with one center in

an office and one in a clinical area. Most of the remaining physicians have two centers

in clinical areas, and the rest have either two centers in office area or one center that

is not in an office or a clinical area.

2.6 Validation

Recall from Section 1.1.4 that the three suggested mechanisms for validating

simulations that we employ are (1) internal validation, (2) checking properties of

simulation against known quantities, and (3) comparing simulation properties and
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results with the expectations of domain experts.

In order to verify that spatial dispersions estimated by our model match up

with real-world HCW behavior, we consulted with a diverse 4 person team of staff

and administrators from the UIHC consisting of members from industrial engineering,

infection control, general medicine and information technology. This behavioral con-

sulting team is well equipped to describe behavior in the hospital because their work

entails a thorough understanding of when and where HCWs are within the facility.

We asked the consulting team to tell us about expected HCW behavior along three

dimensions: (1) where in the UIHC facility would we find different types of HCWs?

(2) which are the most mobile and the most static departments and job categories?

and (3) are there particular times of the day or week during which activity would

change significantly? In this section we validate our results against what happens in

a real hospital setting according to these consultants.

2.6.1 Centers

The Pediatrics department at UIHC consists of specialists that only deal with

children and thus the majority of HCWs working in Pediatrics spend almost all of

their time in the Pediatrics unit. Figure 2.16 shows the centers locations for HCWs

from Pediatrics on the 2nd floor for a typical month. The cluster of dark dots in the

middle of the hospital shows that, based on our model, a large number of Pediatric

HCWs have centers located there and this is where the Pediatrics unit is located

in the hospital. Additionally, the behavioral consultants noted that some members

of Pediatric department work in the Neonatal Intensive Care Unit and the Cystic



www.manaraa.com

70

Fibrosis Unit. Our results confirm that there are a small number (not shown here) of

Pediatric HCWs that have their center in the Neonatal Intensive Care Unit or Cystic

Fibrosis Unit.

UIHC Floor 2

Figure 2.16: Dots mark the centers for HCWs in the Pediatrics department at the
UIHC (2nd floor) based on EMR data from March, 2007, with darker dots indicating
multiple centers for different HCWs at one location.
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2.6.2 Dispersions

To validate the dispersions of HCWs in our models our behavior consultants

identified the most and least mobile types of HCWs. Among the most mobile job

types are House Staff (Residents), Respiratory Therapists, and Dietitians. CT Service

Techs, Unit Clerks, and Secretaries were identified as being some of the least mobile

job types in the hospital. To capture the notion of mobility, we introduce the concept

of a t-radius. The t-radius of a healthcare worker i is the minimum r such that

Prob[i is in Disk(ci, r)] ≥ t.

Here ci is center of HCW i and Disk(ci, r) is the set of nodes in the hospital graph

within r hops of ci. Thus, a HCW with a higher t-radius than another HCW moves

further from their center more frequently and is more mobile. For t = 0.8, Figure 2.4

shows the average t-radii for each job category in the hospital. Notice that CT

Service Techs have very low 0.8-radii indicating they spend 80% of their time in

only a handful of rooms near their center. On the other hand, House Staff have

relatively high 0.8-radii indicating they tend to spend time in many rooms further

from their centers. The job categories not shown in Figure 2.4 and not mentioned

by our behavior consultants as being very mobile or very static generally lie in the

middle of these extremes.

Our behavior consultants noted that even within the same job type, seniority

and mobility may be (negatively) correlated. It was observed that senior members

tend to move around less and assign tasks requiring going to other parts of the hospital

to their junior counterparts. We looked at the difference in t-radii for House Staff.
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Position Title Average t-radius (t = 0.8) Multi-Center
CT Service Tech 1.50 No
Secretary 5.06 No
Unit Clerk 7.20 No
Nurse Manager 11.0 No
Sonographer 13.6 No
Pharmacy Tech 14.0 No
Clinical Lab Scientist 16.5 Some
Professor 20.1 Most
Social Worker 21.2 Most
Dietician 21.4 Yes
Imaging Tech 25.6 Yes
Respiratory Therapist 25.8 Yes
House Staff 30.3 Yes

Table 2.4: Average t-radii with t = 0.8 for selected job categories.

The higher the average t-radii, the more mobile the job category tends to be. Note that this data

was calculated using single-center models for all HCWs, though we indicate in the Multi-Center

column whether this type of HCW uses multi-center models for simulator agenda generation. Note

that the ordering of t-radii meshes nicely with our decision to use single vs. multi-center models

for each type of HCW. Within some position titles, the multi-center decision is not all-or-none

because there are multiple subtypes, e.g., professors can either be clinical or not and also have an

academic rank (assistant, associate, etc.).

Job category Average t-radius (t = 0.8)
House Staff I 35.6
House Staff II 31.3
House Staff III 31.8
House Staff IV 25.0
House Staff V 29.6

Table 2.5: Average t-radius for House Staff.

Senior House Staff (IV and V) tend to move around less than the younger House Staff (I and II).
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Figure 2.5 shows that while all house staff HCWs are fairly mobile, there is a notable

difference in how rank plays a role in the mobility.

As additional validation, we use spatial dispersions to calculate the expected

distance on the hospital graph between two HCWs at any given time. Within almost

all job types, the expected distance between two HCWs is about 40 with a couple of

notable exceptions. Staff Nurse Anesthesiologists have a significantly lower average

expected distance of 20, hinting that these job types have a single focus point for

activity. Within departments, the expected distance between two HCWs is lower,

being in the range of 25-35 weighted hops. The fact that departments cluster together

more tightly than job categories is to be expected since departments tend to have one

or two units in which their employees will spend the majority of their time. A single

job type will normally have HCWs spread across many departments all over the

hospital. Notably, Internal Medicine is the most distributed department with a mean

expected distance of 43.0, and Nursing department has an expected distance of 37.3.

These two departments are large in size and include a majority of House Staff and

Staff Nurses, two of the most mobile job categories.

2.6.3 Activity

Many areas in the UIHC are shut down overnight. While in-patient and out-

patient units on the fifth floor are both open during the day, at night the out-patient

units close and open units generally have reduced staffing levels. Figure 2.17 shows

the expected number of people in each room of the hospital’s 5th floor from 2am

to 3am. For these pictures we calculated values for our centers model considering
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only the people who login overnight. You’ll notice that there are entire parts of the

hospital where no activity is expected during these hours.

During the night there are also significantly fewer HCWs active in the hospital.

The HCWs that are active tend to cover more territory, so we would expect that the

dispersion values for these healthcare workers would see a significant change. HCWs

that login from 2am to 3am have a t-radii of 16.4 compared to a t-radii of 4.8 for

those HCWs that login from 10am to 11am, indicating HCWs logged in at night do

move around more.

2.6.4 Internal Consistency

We expect that centers and dispersions (γ values) should be stable over time.

Figure 2.6 shows the median change in center location and γ-values for each pair of

consecutive months in 2007. Indeed, centers move very little from one month to the

next, and γ-values are stable as well. Our behavior consultants told us that members

of House Staff I are reassigned every month and this group of HCWs exhibited the

largest change in center location from month to month, as can be seen in Figure 2.7.

2.6.5 Empirical Validation

In [96] we manually “shadowed” 148 unique HCWs representing 15 job classes

for a total of 606 hours to acquire data on their contacts. The limitation of this

attempt is of course that our sample size is necessarily tiny (6,654 contacts) because

this approach is so labor intensive. However, contacts within each job type for which

HCWs were “shadowed” and for which EMR access occurs were strikingly similar.

We looked at the contacts for each job class that appears in both the shadow-
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Post-Operative Care Area

Figure 2.17: Activity generated by single-centers models of UIHC HCWs trained
using all EMR activity between 2 a.m. and 3 a.m over our 22 months of data show,
as expected, relatively little activity in the out-patient units in the topmost building.
The post-operative care unit and recovery rooms located in the middle pavilion also
sees a reduction in activity during this time frame since surgeries performed at night
tend to be emergencies and patients will initially recover in an intensive care unit.
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Months Center movement γ movement
Jan-Feb 5.0 0.728
Feb-Mar 1.0 0.472
Mar-Apr 1.0 0.483
Apr-May 1.0 0.490
May-Jun 1.0 0.459
Jun-Jul 1.0 0.508
Jul-Aug 1.0 0.489
Aug-Sep 1.0 0.469
Sep-Oct 1.0 0.447
Oct-Nov 3.0 0.619
Nov-Dec 1.0 0.443

Table 2.6: Median difference in centers and γs in consecutive months in 2007.

While a few HCWs have centers in very different parts of the hospital from one month to the next,

the vast majority move less than a few weighted hops. γ values also change very little for most

people. See Figure 2.7.

Job Class Center movement γ movement
Administration 0.0 0.447
Physician 0.0 0.373
Unit Clerk 0.0 0.852
Nurse 2.0 0.468
Resident Physician 17.0 0.426

Table 2.7: Median difference in centers and γ in consecutive months in 2007 for
selected job types.

Note that for most HCWs, centers move very little, but House Staff HCWs have centers that move

more than most. One possible explanation for this is that House Staff HCWs rotate to different

units on a monthly basis as part of their training. Even though physicians and residents are both

suited to multiple centers, physicians’ centers are much more stable from month to month.
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based contact graphs and contact graphs generated from the centers models. For

both contact graphs, we noted the top three job classes each class came in contact

with in a list of “top neighbors”. On average, each class shared 2.2 out of 3 possible

classes in their top neighbors list. In a few cases, classes from the two graphs shared

all 3 possible neighbors, and in one case the lists were exactly the same.

Keep in mind that there are some limitations with comparing the two contact

graphs. The job classes in the two different data sets do not map one-to-one, and for

roughly 20% of HCWs we have no job title information. Despite these limitations, we

do see clear similarities between contact graphs generated from the centers models

and these observed contact graphs.

2.7 Applications to Simulation

Knowing the spatial distributions of HCWs provides a natural way for gener-

ating HCW movement within the hospital as well as HCW contact networks. Here

we describe our approach to generating this movement and these networks and pro-

vide a brief analysis. In Chapter 4, we aim to use these networks to evaluate control

strategies such as vaccination, quarantining, cohorting, etc. for the mitigation of

hospital-acquired infections.

The basic idea is to generate, for each HCW i, a random walk in the hospital

metric space whose stationary distribution is the static spatial distribution of the

healthcare worker. If a HCW is in room v at time step t, then in time step t + 1

she either stays in room v or moves to an adjacent room according to the transition

probabilities of the random walk. Our goal therefore is to solve for these transition
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probabilities, given the target stationary distribution. Fix a person i and let pv be

the probability of HCW i being in room v. Recall that according to our model,

pv = αv · βi · d(ci, v)
−γi ,

where ci is i’s center, γ is i’s dispersion, βi is the constant of proportionality, and αv

is room v’s relative “attractiveness”. Note that
∑

v pv = 1.

Assuming there are n nodes in the giant component of our hospital graph

labeled 1, 2, . . . , n let p be the spatial distribution vector (p1, p2, . . . , pn) for i. Let

T = (tuv)n×n be HCW i’s transition matrix with tuv being the probability of i moving

from u to v. Note that tuv and tvu may be distinct and if there is no edge between

u and v, tuv = tvu = 0. We are interested in finding a T such that p · T = p

and the following additional constraints are satisfied. Here N [u] denote the closed

neighborhood of u, i.e., the neighborhood including u.

1.
∑

v∈N [u] tuv = 1 for all nodes u in the hospital graph.

2. tuv ≥ 0 for all nodes u and v in the hospital graph.

The following claim (see for e.g., Chib and Greenberg [20] for a simple proof)

leads to a simple algorithm for constructing T .

Lemma 1 Suppose that for all u 6= v, pu · tuv = pv · tvu and
∑

v∈N [u] tuv = 1, then
p · T = p.

This claim suggests that one way to generate entries in T is to first generate for each

corresponding pair of directed edges (u, v) and (v, u) (u 6= v) the values tuv and tvu

satisfying the constraint that pu · tuv = pv · tvu. Once these values are all generated, it

is possible that the sum
∑

v∈N(u) tuv exceeds 1. If so, we scale down all the tuv values
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so that for all u, the sum
∑

v∈N(u) tuv is at most 1. Note that this scaling does not

cause any violation of the pu · tuv = pv · tvu constraint. Finally, for each node u, the

residual probability 1−
∑

v∈N(u) tuv is assigned to tuu. Clearly, this algorithm ensures

that T is nonnegative and that
∑

v∈N [u] tuv = 1 is satisfied for all u. Furthermore,

since the pu · tuv = pv · tvu constraint is satisfied, from the above lemma we obtain that

p · T = p. The algorithm is described in Algorithm 4 and we obtain the following

lemma via the above argument.

input : HospitalGraph G
stationary probability distribution p for some HCW i

output: A transition matrix for HCW i

1 initialize transition matrix T ;
2 for each edge ( u, v) ∈ G where u < v do
3 Tuv ←random(); // Tuv can be set to arbitrary value

4 Tvu ← pu · Tuv/pv;

5 end
6 S ← maxu∈G

∑

v∈N [u] Tuv;

7 if S > 1 then
8 for each node u ∈ G do
9 Tuv ← Tuv/S;

10 end

11 end
12 for each node u ∈ G do
13 Tuu ← 1−

∑

v∈N [u] Tuv;

14 end
15 return T;

Algorithm 4: GenTransit

Lemma 2 Algorithm GenTransit constructs an n× n matrix T such that tuv ≥ 0
for all nodes u and v,

∑

v∈N [u] tuv = 1 for all u, and p · T = p.
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We wish to use the these HCW models to generate agendas suitable for use in

the agent-based simulator we discuss in detail in Chapter 4.

2.8 Comparison with simple models

While validation showed that centers-based models produce reasonable pat-

terns of activity for HCWs, we introduce simple unit-based models for comparison.

For each HCW i, (1) sum up observed activity in each unit of UIHC, (2) record the

unit HCW i spends the most time in, hi, and the percentage of time spent there,

ti. The stationary probability distribution for HCW i is thus ti
size(hi)

(where size(hi)

is the number of rooms on unit hi) within hi, and
1−ti

size(UIHC)−size(hi)
everywhere else.

This probability distribution can then be used in agenda generation in place of the

centers-based models to facilitate comparison.

To compare agendas from centers-based models against those from our simple

models, we look at how they differ first in terms of the total distance traveled by all

HCWs, and second in terms of their contact networks. HCWs travel over 5 times

as far in agendas based on the simple models as they do in agendas based on the

centers models. Without instrumenting HCWs with pedometers or using fine-grained

tracking data it is difficult to estimate how far the various HCWs at UIHC actually

travel per shift, but this does indicate a significant difference between the simple

models and centers-based models. Because HCWs in the simple unit-based model do

not prefer one room in their home unit over any of the adjacent rooms, the random

walks do not leave them in the same room for very long.

Next, we look at contact network graphs based on agendas generated from
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Histogram of Degrees using Centers−based Models
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Histogram of Degrees using Unit−based Models
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Figure 2.18: These degree distributions highlight a difference between our centers-
based and our simple unit-based HCW models. Figure 2.18(a) shows the degree
distribution for the contact graph generated by simulating activity generated by the
centers models. Figure 2.18(b) shows the same distribution for activity generated by
the simple unit-based models. Note that both distributions are heavy-tailed, however,
the mode of the centers-based contact graph degree distribution is 4 contacts, while
the mode of the unit-based contact graph degree distribution is 12. Further, the mode
occurs 188 times in the former and only 119 times in the latter. See Figure 2.8 for
more detailed graph statistics.
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Histogram of Degrees using Tweaked Models
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Figure 2.19: Reducing the γ values of the HCW models does indeed result in contact
graphs with degree distributions that resemble those based on the unit-based models.
Note the mode is shifted to the right and occurs much less frequently than in the
original centers-based models. See Figure 2.8 for more detailed graph statistics.

Graph Statistic Centers-based Graph Unit-based Graph Depressed Graph
Num. Nodes 6878 6878 6878
Num. Edges 193986 193986 193986
Clustering 0.6955 0.5734 0.6820
Mean Degree 56.4 56.4 56.4
Max Degree 390 414 245
Degree Std. Dev. 56.5 48.9 43.3
Degree Dist. Mode 4 12 19
Occurrences of Mode 188 119 110
Diameter 15 9 14
Avg. Path Length 4.2 3.5 4.6

Table 2.8: Centers-based and unit-based contact graphs have small world properties
such as high clustering coefficients, low diameter, and low average path length.

The depressed contact graph, which is generated based on tweaked centers models with increased

mobility for low-mobility HCWs, shares some properties with the centers-based graph and some

with the unit-based graph.
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the unit-based models and those generated from the centers-based models. While

both sets of contact graphs exhibit many “small world” properties such as high clus-

tering coefficients, low diameter and average path length between individuals, and

heavy-tailed degree distributions, as shown in Figures 2.18 and 2.8, there are some

differences in the degree distributions. Note how quickly the frequency peaks in the

centers-based model contact graph degree distribution. The unit-based contact graph

degree distribution has a higher mode, which also occurs much less frequently. One

potential explanation for this discrepancy is that unit-based models result in more

random mixing with other HCWs with the same home unit, which makes sense given

that HCWs travel farther in the unit-based models. To test our hypothesis that more

random mixing within a unit is responsible for these flatter degree distributions, we

look at a second set of degree distributions based on slightly modified centers models.

Figures 2.19 and 2.8 show what happens to the centers-based contact graph degree

distributions if you artificially limit the γ values to be at or below 1.5, effectively

forcing the more stationary HCWs to move around more. The degree distribution in

this case shares some properties with the unit-based contact graph degree distribu-

tion, suggesting that one of the reasons for the flatter degree distribution in the case

of the unit-based models is a higher level of mixing within units.

Comparing the unit-based contact graphs to the “shadow data” contact graphs

discussed in Section 2.6.5 suggests a more fundamental problem. The average number

of common job classes in the “neighbor list” for each class falls from 2.2 to 1.5, and

in one case there are exactly zero common neighbors between the two sets of contact
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graphs. This suggests a significant difference in the level of interaction between various

job classes.

In addition to these problems, there are many other non-trivial shortcomings

with the unit-based modeling: (1) it requires artificially imposing compartment (unit,

in this case) boundaries on the hospital geometry, (2) it ignores expected room

activity levels, (3) it cannot be expected to handle HCWs with multi-center models

very well, and (4) it makes meaningful grouping / aggregation at the job title or job

class levels more difficult. Regardless of which model is used, agenda generation is

a significant time investment in itself, the computation required to generate agendas

based on these simple-to-compute unit-based models is non-trivial.

Extensions to the unit-based model to deal with these and other issues are

possible, but it seems a slippery slope with the centers-based models at the bottom.

Extensions need to deal with non-uniform room activity levels, avoid increasing model

complexity and memory usage, avoid over-fitting the observed data, and either address

a serious weakness or come with a clever trick for efficiently generating agendas that

bypasses the use of transition matrices.
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CHAPTER 3
PATIENT MODELING

3.1 Introduction

Our model of a hospital is incomplete without an adequate model of patient

flow. Patient flow models, when combined with HCW models, allow us to study

numerous problems, including patient care issues, e.g., intensive care recidivism. In-

tensive care recidivism occurs when a patient is transferred or discharged out of an

intensive care unit (ICU), closely followed by readmission to an ICU.

Such recidivism is associated with increased mortality rates, lengths of stay

(LOS), and cost of care: more specifically, mortality rates are up to six times higher for

patients readmitted to ICUs, and such patients are up to 11 times more likely to die in

the hospital [39]. It should be noted that while ICU recidivism is widely recognised as

a serious problem, there is no consistently used definition. Some studies include ICU

readmissions only within the first 48 hours [88], while many do not mention a time

window and presumably include entire visits [10, 74, 23], and still others consider ICU

readmissions across hospital visits [22]. For the purposes of this work, we classify a

pair of transfers as indicating recidivism if they occur during the same visit and within

one week of each other, the first transfers the patient out of an ICU to a non-surgery

unit, and the second indicates a readmission to any ICU. Our definition includes all

patients hospital-wide, rather than focusing on a specific unit or age group.

In addition to ICU recidivism, we are also interested in clinical and operational

issues that may occur when a hospital’s ICUs operate near capacity. Previous work
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looking at clinical outcomes, LOS, and cost as a function of patient load in ICUs has

generated mixed results. A few studies have found that increased load (i.e., increased

patient census) negatively affects patient outcomes and / or LOS [21, 19, 108], though

Iwashyna et al. found no impact on mortality in their study [64]. Chalfin et al. looked

at the effects of delayed transfer to intensive care on patient outcomes and found that

such delays resulted in increased LOS, and increased mortality [18]. Hospitals thus

face difficult decisions when ICUs begin to fill up.

With our interest in exploring similar patient care issues in mind, we examine

previous work in patient modeling. Unlike spatial modeling of HCWs, the flow and

care of patients has attracted the attention of many groups over the last 40 years. In a

review of the literature, Marshall et al. point out that clinical patient flow models, in

which each patient transitions through a series of health statuses, can be built using

data that is already commonly collected. However, patient flow models based on an

operational perspective, in which patients occupy specific locations in a healthcare

facility, can be much more complex and it can be expensive and time consuming to

collect data to train such models [79]. While developing patient flow models based on

an operational perspective does require more data and complexity, both our interest

in epidemiological simulation and our interest in exploring the issues surrounding

ICU recidivism are better served by operational models, and we are fortunate to have

access to fine-grained patient flow data from UIHC.

Operational patient flow models often involve the use of discrete event sim-

ulation. For these simulations, the population in the hospital is divided into 2-4
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compartments, and the population in the community is divided into 1 or 2 compart-

ments. The population in one compartment has some rate of transfer to a subset of

other compartments [70, 62, 38, 40]. Our patient models are inspired by this work,

though we also draw from clinical modeling techniques since we are particularly in-

terested in modeling at the agent-level to support epidemiological simulation. From

a clinical perspective, stochastic models for patient flow and optimal priority bed dis-

tribution include Markov models, phase-type models, conditional phase-type models,

mixed exponential distributions, compartmental modeling, and simulation modeling

[27, 41, 112, 8, 79]. Many of the applications for patient models also draw from or are

related the broad field of operations research / management sciences work, e.g., mod-

eling manufacturing operations [52] and the automated control of internet services

[4].

3.2 Model Description

3.2.1 Single Compartment Model

We consider two patient flow models. The first, the single compartment model,

is a simple three parameter model. The fill rate specifies the number of total hospital

beds to be occupied at any given time and the other two parameters specify the patient

LOS distribution. While it is widely acknowledged that frequency of patient LOS does

not follow a normal distribution (e.g., [118]), there is some disagreement in the patient

modeling literature about what probability distribution should be used for modeling

patient LOS. A number of groups use geometric or exponential distributions [19, 97],

and indeed we initially chose an exponential distribution for the sake of simplicity and
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ease of training. However, we find that this distribution tends to poorly fit observed

data for very short hospital stays since it peaks immediately, while LOS in observed

patient data peaks on the second day. Thus, as suggested by Frick et al. and others

[46, 101], we also consider a log-normal distribution for LOS.

3.2.2 Unit-based Compartmental Model
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Figure 3.1: Somewhat higher numbers of patients are admitted between 9am and
5pm than during other hours of the day. A spike is clearly visible between 5am and
7am, when elective surgeries are typically scheduled.

We model the space of the hospital at the unit level. There is a compartment

in our model for each unit in the hospital, as well as an additional compartment

representing the community. Each compartment has a list of patient bedrooms, a

capacity, and is either an ICU, a surgery unit, or a general unit. The community

compartment has infinite capacity, and transfer to and from the community represents
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Figure 3.2: Patients admitted between 5am and 9am spend an average of 1-2 fewer
days in the hospital than those admitted during other hours of the day, due in large
part to the large number of patients admitted for elective surgeries scheduled early
in the morning.

admission and discharge (or death), respectively.

Given the current compartment of a patient, the next location and the waiting

time before transfer are a function of the patient’s time of admission into the hospital,

as well as the mode of the patient. The inclusion of a patient mode is inspired by re-

search suggesting significant differences in clinical outcomes and operational efficiency

based on the patient load in ICUs [19, 21, 108] at the time of transfer or discharge.

Demand-driven discharges occur when relatively stable patients are transferred out

of an ICU to free up beds for less stable incoming patients. While few would admit

such triage takes place (and often it is not explicit policy), Chan et al. found evidence

that it does, going so far as to study different policies for choosing which patients

should be transferred first when ICUs begin to fill up [19]. Due to difficulties associ-
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ated with identifying demand-driven discharges in observed data directly, we instead

identify potentially demand-driven transfers. A potentially demand-driven discharge

is a transfer out of an ICU while the ICU load is relatively high. Our patient mode

can either either be normal, the default upon entering the hospital, or post-demand-

driven indicating that the patient has previously been transferred out of an ICU at

a time when the ICU was under a high load. This mode is “sticky”, and persists

through the remained of the patient’s stay. We call the parameter which determines

what ICU load is considered high the ICU high load threshold.

Figure 3.1 and Figure 3.2 motivate our incorporation of admission time into

our model. The rate of admissions, transfers, and especially discharges varies by

time of day with the 9-5 workday seeing more patient activity than other hours of

the day. The workday effect is especially dramatic with respect to discharges, with

patients being over 100 times more likely to be discharged at 3pm than 3am. The

average patient LOS also exhibits a time of day dependency. The two figures taken

together show a spike in admissions between 5am and 7am, and a low average patient

LOS between 5am and 11am. This is likely due to the fact that patients admitted

for elective surgeries are typically scheduled in the early morning, while patients

admitted through the emergency room and other sources are more evenly spread out

over the day. Elective surgeries typically do not result in long hospital stays, so such

admissions drive down the average LOS. To allow our patient flow model to capture

this daily variation, we divide the day up into four six-hour blocks and train separate

compartment-compartment transition matrices and LOS distributions for each (block,
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mode) pair. That is, e.g., (block=12pm-6pm, mode=normal), has associated with it

a full transition matrix and an LOS distribution for each possible transition. For the

reasons outlined in 3.2.1, we use the two parameter lognormal distribution for our

LOS distributions.

We also model patient transfers as being randomly extended such that the

number of admissions, transfers, and discharges per hour fit some distribution (e.g.,

the corresponding values observed in the observed patient data). For example, when

a patient arrives on some unit (current), the next unit is picked from the appropriate

transition matrix. The patient’s LOS on the current unit is pulled from the LOS

distribution for the (current, next) transition, and then randomly extended such that

the probability of transfer during each hour of the day matches the observed transfer

proportions. For example, if drawing from the LOS distribution yields 4pm Tuesday

as the transfer time, the transfer has some appropriate probability of occurring at

each hour between 4pm Tuesday and 4pm Wednesday.

Note that while our model does not explicitly capture the idea of patient health

status, it could be extended in the future after appropriate training data are made

available.

3.3 The ADT Dataset

One of the datasets made available to us by UIHC contains every patient

admission, discharge, and transfer (ADT) between January, 2006 and June, 2009.

For each of the 104, 543 inpatient visits, the ADT dataset gives us the date and time

of admission and discharge, a classification of the service caring for the patient, and
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information about the bed, room, and unit to which the patient was admitted. For

each of 307, 692 transfers, we are given the date and time of transfer, and the bed,

room, and unit of both the source and destination of the transfer.

Unfortunately, initial analysis revealed a number of problems with the ADT

data, which had to be dealt with before it was suitable for training patient flow models.

As with the EMR data used to train HCW models, many (171, 122 in the case of the

ADT data) rows contain no room level data or refer to rooms that do not map to a

room in our hospital graph. Fortunately, we have fairly complete information about

the location of patient rooms within UIHC, and even when visit or transfer records

are missing room-level information, the vast majority still contain unit-level location

data: only 0.1% of transfers are missing this unit-level information, and no visits are

missing at least unit-level information. Since we train models at the unit level, we

only care about completeness of the room-level information to the point where we

can assign each patient bedroom to a unit. While some rooms are used by multiple

(potentially many) units, there are only a handful of rooms for which there is no

clearly dominant unit. We thus map each room to the unit that uses it the most.

Throughout the 3.5 years we have data for, we identify roughly 650 rooms patients

can stay in, and 800 patient beds (including operating rooms and nursery beds).

Of more serious concern, we observe many cases (on the order of 25% of

transfers) where transfer sources, destinations, or timestamps are inconsistent with

either other transfers or the visit-level information. For example, there are cases where

transfer timestamps are exactly the same time as admission time, and some where
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transfer times are past the time of discharge. There are also cases where location

information in consecutive transfers does not match. For example, a transfer at 10am

specifies destination Room 4205, but the next transfer occurs at 3pm the same day

and cites Room 4825 as the source. In these cases, we have to make a decision about

how to patch the hole in our data. We identified and implemented three strategies

for dealing with such problems:

1. Accept earliest data, and modify later data: in this example, this means modi-

fying the second transfer’s source to be Room 4205.

2. Accept newest data, and modify the earlier data: in this example, this means

modifying the first transfer’s destination to be Room 4825.

3. Accept both transfers, and insert a new transfer to split the difference: in this

example, this means inserting a new transfer from Room 4205 to Room 4825 at

12:30pm with a source.

In all cases, we ignore transfers that occur less than one second after admission or

another transfer and we ignore transfers occurring after discharge.

The more transfers for a patient visit, the more likely the data contain errors;

half of all visits exhibit one of these transfer problems. Nonetheless, we believe there

is signal in the patched datasets. Wherever there was a choice in how to deal with

a problematic transfer, we used each of the repair options and verified that models

trained were similar to each other with respect to metrics such as average population

level per unit.
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3.4 Model Training

Training our single compartment models is straightforward. We simply count

the total number of patients admitted to UIHC and the total number of seconds they

have spent there. Knowing how many days we have data for, this allows us to compute

the average hospital-wide patient load. We then find the maximum likelihood log-

normal distribution to account for the observed lengths of stay.

We train our compartmental models in several steps. The first step is to

classify each admission, transfer, and discharge as belonging to one of our eight states

by looking at the time of day of admission, and determining if and when the patient

left an ICU that was potentially capacity-strained. Because a patient transfer actually

takes on the order of a couple hours and there is some noise in the ADT data, we

transition a patient visit into the post-demand-driven mode if the volume of patients

seen in an ICU on the day of the transfer is in the top quartile of patient volumes for

ICUs within the hospital. We then go through each transfer (admission, discharge)

and update the transition matrix and LOS distribution parameters for the (time of

day, mode) pair associated with that transfer.

Lastly, we calculate the proportion of admissions, transfers, and discharges

that take place during each hour of the day.

3.5 Agenda Generation

Patient agendas are generated by agent-based discrete-event simulators.
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3.5.1 Single Compartment Model

For single compartment models, the patients are placed in random empty

patient bedroom in the facility until the fill rate is satisfied, and each draws a length

of stay from the log-normal distribution. As soon as a patient is discharged, a new

patient is placed randomly in an empty patient bedroom. This process continues

until the desired amount of data has been generated.

3.5.2 Unit-based Compartment Model

Algorithms 5 and 6 give an overview of the process by which agendas are

generated from a unit-based compartment model. The simulator takes as input the

number of patients that should be in the hospital at any given time, the probability

distribution by hour of day for admissions, transfers, and discharges, and a unit-based

compartment model.

Note that the community compartment has infinite capacity, and a population

is not maintained there. All admitted patients are assumed to be unique and thus

recidivism is only within-visit, not across visits.

3.5.2.1 Initialization

As shown in Algorithm 5, enough patients are queued up for admission at

initialization such that the fill rate is satisfied, and each is assigned a time of admission

pulled from the admission probability distribution observed in the ADT data. The

simulator is run for some warm-up period (e.g., six month) to get the simulator into

a steady state before agendas are actually recorded.
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input : FillRate, admitsByHour
output: initialized patient queue, Queue

1 // Initialize the priority queue (sorted by time of

2 // next transfer)

3 Queue ← ∅;

4 // Enqueue the required number of patients for admission

5 while number of patients < FillRate do
6 // GenPatientAdmission creates new patient, admission

7 // respects admitsByHour
8 patient ←GenPatientAdmission(simTime = 0);
9 Enqueue(Queue,patient);

10 end

Algorithm 5: Unit-based Model Agenda Generation (Initialization)

3.5.2.2 Generation

Algorithm 6 outlines the process of generating agendas from unit-based mod-

els. Potential transfers, of which admissions and discharges are just special cases,

are stored in a priority queue based on the earliest time the transfer can take place.

When a transfer is dequeued, the capacity of the destination compartment is checked.

If there is an unoccupied bed, the transfer goes through immediately, after which the

next transfer for that patient is generated and added to the queue by consulting the

appropriate transition matrix and drawing from the corresponding LOS distribution.

The transfer time is then randomly extended by choosing an hour of day according to

the transfers by hour probability distributed observed in the ADT data. If there is no

free bed, the transfer will be queued and reattempted after some delay, unless it has

already been delayed for multiple subsequent attempts. In that case, the destination

is updated by resampling from the distribution of target compartments (excluding
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input : Queue, admitsByHour, dischargesByHour, transByHour,
daysNeeded

output: patient agendas are recorded to disk

1 simTime ← 0;
2 while simTime < daysNeeded do
3 patient ←Dequeue(Queue);
4 simTime ←TimeForTransfer(patient);
5 set patient mode to post-demand-driven if in high load ICU ;
6 if CanTransfer(patient) then
7 Transfer(patient);
8 if IsDischarged(patient) then
9 if simTime > warmupTime then

10 RecordAgendaToDisk(patient);
11 end
12 // Replace with a new patient

13 patient ←GenPatientAdmission(simTime);
14 Enqueue(Queue,patient);

15 else
16 // GenNextTransfer picks transfer time such that

17 // transByHour is respected

18 Enqueue(Queue,GenNextTransfer(patient, simTime));

19 end

20 else
21 if TooManyDelays(patient) then
22 // Attempt to route patient to unit with open bed

23 dest ←NewDestination(patient);
24 if dest == ∅ then
25 Enqueue(Queue,ApplyDelay(patient));
26 else
27 UpdateDest(patient,dest);
28 Transfer(patient);
29 Enqueue(Queue,GenNextTransfer(patient, simTime));

30 end

31 else
32 Enqueue(Queue,ApplyDelay(patient));
33 end

34 end

35 end

Algorithm 6: Unit-based Model Agenda Generation
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the community) until a compartment with an unoccupied bed is chosen. If no such

compartment exists, the transfer is queued and delayed once again. This process

continues for each agent until the agent is transferred to the community compart-

ment, which indicates discharge or death. At that point, a new patient is queued for

admission.

Two parameters are tuned using statistics based on the output of agenda

generation simulation. The first parameter that needs to be tuned, the ICU high load

threshold, specifies the level at which ICUs should be considered full or near-full.

We set the threshold such that 75% of the hospital ICU daily loads are less than

or equal to this value. Since changing this threshold will change the dynamics of

the simulation, it may take several iterations to find a good threshold. Finally, we

scale the compartment LOS distributions such that the overall LOS distribution for

patients matches the observed patient LOS distribution.

3.6 Validation

Figures 3.3, 3.5, and 3.4 show the LOS distributions for the observed UIHC pa-

tients, and typical LOS distributions for patient agendas based on single compartment

models and unit-based compartment models. Note that observed LOS distribution

and simulated (unit-based) LOS distribution both exhibit cyclically occurring peaks

and troughs. Patients are much more likely to have a LOS near an integer number of

days than they are to have a LOS halfway between two full days. This is explained by

the fact that patients are more likely to be admitted during the day, and much, much

more likely to be discharged during the day. Note that all of these LOS distributions
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Figure 3.3: The observed LOS distribution based on the ADT data contains periodic
spikes near full days indicating patients stay full days rather than partial days. This
behavior occurs because admissions are disproportionately likely to occur during the
day, and discharges are very unlikely at night or very early in the morning.
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Figure 3.4: Simulated LOS are heavy tailed, and share many characteristics with
the observed LOS distribution. Patients are likely to stay near full days rather than
partial days, the distribution peaks on day 2, and the distribution is heavy tailed.
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Length of Stay for Simple Simulated Patients
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Figure 3.5: Simulated patient LOS for patients generated by on the single-
compartment patient model is missing the daily spikes. The single compartment
model still manages to capture the fact that LOS peaks on or near day 2, and is
heavy tailed.
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Figure 3.6: A quartile-quartile plot of observed LOS versus simulated LOS shows a
very close match of the distributions for LOS values under 70 days. For LOS > 70
days, the LOS values in the simulations tend to be longer, though it should be kept
in mind that, despite the large amount of real-estate occupied by this region of the
plot, few patients in either data set (< 0.5%) have LOS values in this range.
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High Load Threshold Recidivism Rate LOS Simulated 75th %ile Load
Disabled 0.1216 6.149 0.730
0.90 0.1438 6.343 0.786
0.85 0.1497 6.385 0.799
0.825 0.1557 6.447 0.809
0.80 0.1567 6.462 0.816
0.75 0.1625 6.489 0.816
0.70 0.1675 6.555 0.826
0.60 0.1698 6.601 0.831
0.00 0.1744 6.639 0.832

Figure 3.7: Our ICU high load threshold is meant to be chosen such that the ICU
daily census is less than or equal to that threshold on 75% of simulated days. Setting
this threshold at 0.825 yields the desired property that the threshold parameter and
simulated ICU loads are nearly the same value. This value also happens to be close to
the 75th percentile ICU load observed in the ADT data, which is 0.76. Note also that
the recidivism rate for the chosen ICU high load threshold is close to the observed
readmission rate of 0.1391, though somewhat greater.

peak at LOS = 2, which would not be the case for an exponential distribution.

Figure 3.6 shows a quartile-quartile plot comparing the observed LOS distri-

bution to the simulated LOS distribution. Note that they match very closely until

the LOS reaches 70 days or so, at which point the generated patients have longer

stays. It would be possible to use separate distributions for short and long LOS, but

given that there are so few patients with LOS > 70 (< 0.5%), a single distribution

is sufficient for our purposes. It should be noted that while the observed and simu-

lated LOS distributions appear to be similar in many respects, a chi-square test for

goodness of fit was inconclusive (p = 0.25).

With regard to recidivism rates, the single compartment models are not useful:

the recidivism rate is trivially 0 for all sets of generated patient agendas since patients

are never transferred. In the observed patient stays and under our definition of ICU

recidivism, we find that 13.9% of patients transferred out of an ICU are readmitted.



www.manaraa.com

102

Figure 3.7 shows the same statistics for a few different choices of ICU high load

thresholds. The ICU loads and recidivism rates in simulated patient agendas are

similar to those observed in the ADT data.

It is worth noting that the single compartment models (or even the 4-5 com-

partment models more commonly found in the literature) also fail to capture the fact

that patients can interact with a diverse set of HCWs by moving from unit to unit.

This seems to be of particular concern when studying the spread of infections within

a healthcare environment.
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CHAPTER 4
APPLICATIONS

4.1 Introduction

A realistic hospital simulator can be used to study a wide variety of problems

including the spread of nosocomial infection, various operations research problems,

such as staffing assignments, bed allocation, etc.[98, 35], as well as the many of the

patient care problems mentioned in Chapter 3. In this Chapter, we showcase three

such applications.

First, we will use our simulator to explore the effects of different infection

control policies on the spread of mumps. Second, we look at social networks within

the hospital, which might be used, e.g., when determining which HCWs should be a

priority during vaccination campaigns[30, 31, 32, 28]. These first two applications are

taken from the emerging field of computational epidemiology. Finally, we consider an

instance of a resource allocation problem: where to place time clocks in a hospital so

as to minimize a particular cost function.

4.2 Agent-based Discrete-event Simulation

Algorithm 7 shows our simulation framework. We use an agent-based discrete-

event simulator to study infectious diseases and social networks. We initialize by

creating an empty hospital. Next, we read in our HCW and patient agendas, which

are generated as described in Chapters 2 and 3, respectively. Each line in the agendas

specifies an agent, a room to be occupied, and a time to enter and leave that room.

The agendas are sorted by the room entrance times and read sequentially with agents
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being moved around the hospital as appropriate. Our applications can then work on

top of this framework, typically doing some work each time an agent leaves a room

or after a some amount of time passes.

4.2.1 Epidemiological Modeling

input : agendas, disease transmission parameters, etc.
output: contact graphs, disease graphs, etc.

1 // Initialization

2 // Our priority queue is ordered by the time of action of

3 // enqueued agenda items

4 queue ← ∅;
5 Hospital ← ∅;

6 // Queue up all room entrances

7 for each agenda in agendas do
8 Enqueue(queue, EntranceTime(agenda), Entrance, agenda);
9 end

10 while queue is not empty do
11 time, action, agenda ←Dequeue(queue);

12 if action == Entrance then
13 ProcessEntrance(Hospital, agenda);
14 // Enqueue the corresponding exit event

15 Enqueue(queue, ExitTime(agenda), Exit, agenda);

16 end

17 if action == Exit then
18 // This is where contact graph or disease simulation

19 // code would go

20 ProcessExit(Hospital, agenda);

21 end

22 end

Algorithm 7: Our framework for discrete-event simulation

It has recently become clear that the random mixing assumed by much of the
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past infectious disease research is problematic, since it cannot explain, for example,

the existence of super-spreaders that infect a disproportionately many number of other

individuals. To move beyond random mixing, recent work has looked at the spread

of disease on arbitrary contact networks rather than within compartments[45, 82,

81, 86, 29, 28, 117, 87], including work specifically considering nosocomial infections

[120, 114, 113]. While some of these groups do consider the spread of disease on

arbitrary contact networks, they are either forced to make assumptions about how

individuals mix based on job role and unit assignment, or are just not looking at

physical contact networks. To our knowledge this is the first effort to use agent-based

discrete-event simulation to study the spread of disease within a hospital setting using

real location data and on such a large scale.

Here, we study the effects of an infection control policy which quarantines

symptomatic HCWs for 0, 5, and 9 days during a mumps epidemic. Our model of

disease is based on the commonly used SIR model (see Hethcote for a review of the

literature[54, 55]). Agents in our simulation are in one of three states: susceptible,

infectious, or recovered. Susceptible agents have some chance of infection after com-

ing into contact with infectious agents, thus becoming infectious themselves. Once

infectious, an agent remains so for some period of time, after which recovery occurs.

Agents that are recovered cannot become reinfected, and are no longer themselves

infectious. Note that agents have some probability of developing symptoms some

prespecified short time after becoming infectious, meaning some will remain asymp-

tomatic. We model vaccination by setting vaccinated agents to the recovered stage
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without going through the infectious stage, and we model quarantine by preventing

agents from infecting other agents for the appropriate number of days.

4.2.1.1 Methods and Results

We review the mumps literature to determine appropriate ranges for the var-

ious disease parameters, including the probability of transmission given contact, the

shedding curve (which we use as a proxy for the probability of being infectious after

a period of time has passed), the odds of developing mumps-specific symptoms, the

waiting time before symptoms develop, and the odds a particular HCW or patient

has been successfully vaccinated against mumps[14, 106, 78, 94, 93, 80].

input : two agents (agent1, agent2) for which contact is ending,
transProb

output: updated patient disease states

1 // Assumptions:

2 // 1) there is one shot at infection after contact ends

3 // 2) duration of contacts ≪ infectious period

4 // 3) agents ordered such that if either agent is

5 // infected, agent1 is infected

6 if Infected(agent1) and Susceptible(agent2) then
7 // Quarantined agents are unable to infect other agents

8 if Quarantined(agent1) then
9 return;

10 end

11 // Shedding peaks on day two after exponential ramp up

12 // and decays exponentially after day two

13 r ←rand();
14 if r < transProb · SheddingForDayOfInfection(agent1) then
15 Infect(agent2);
16 end

17 end

Algorithm 8: Determine whether infection should spread after the end
of a simulated contact
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Because it is difficult to directly observe an infection physically spreading from

one individual to another, it is non-trivial to determine exact infection parameter val-

ues. To handle this uncertainly, we perform many replicates over a range of parameter

values to ensure that results are robust. We also run many replicates with a range of

infectious disease parameters and three different infection control policies: 1) do not

quarantine symptomatic HCWs, 2) quarantine symptomatic HCWs for 5 days, and

3) quarantine symptomatic HCWs for 9 days.

Our infectious disease simulator has both HCW and patient agents, with agen-

das generated as described in Chapters 2 and 3 respectively. A small number of agents

are randomly infected to seed the epidemic, and the agent agendas are played out.

After every contact between two agents ends, the simulator decides whether or not

to spread the infection based on the infection status of those two agents at that

particular time as shown in Algorithm 8.

Figure 4.1 shows statistics about the spread of mumps for the three different in-

fection control policies. Our simulations show that quarantining symptomatic HCWs

significantly reduces the transmission of disease. Quarantining patients for 9 days

rather than 5 days results in a further reduction in infections over the 5 day alterna-

tive. Of course, this ignores the costs associated with increased quarantine duration.

It should be noted that mumps is rarely fatal, and there is a non-trivial cost associ-

ated with implementing a quarantine policy. Indeed, the Centers for Disease Control

and Prevention, the Healthcare Infection Control Practices Advisory Committee, and

the Academy of Pediatrics all changed their recommended mumps quarantine periods
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Figure 4.1: Attack rates assuming a transmission probability of 0.075% per contact
show that quarantining effectively reduces the transmission of mumps in our sim-
ulations, with the 9 day quarantine reducing transmission further than the 5 day
quarantine, especially for low vaccination rates / effectiveness. However, mumps is
rarely fatal and implementation of the 9 day quarantine is potentially costly and
burdensome.

from 9 to 5 days in 2007-2008 after a study showed that compliance was higher (in

university settings) with 5 day quarantine periods [1].

4.2.2 Contact Graphs

In contrast to traditional random mixing models, contact network epidemiol-

ogy [81, 86] is a relatively new area of research that investigates the spread of dis-

ease through a population based on intrinsic features of the pathogen and structural

properties of a contact network (graph) that explicitly models physical interactions

between individuals. The relevance and verisimilitude of contact network epidemi-

ology depends mostly on the quality of the contact networks. Constructing reliable

contact networks is a challenge since these networks model physical interactions as
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opposed to online interactions.

4.2.2.1 Graph Generation

During the initialization phase of our simulator, we create a graph whose nodes

are agents (HCWs and patients) and whose edge set is empty. Each time a pair of

agents coexists in a room, an edge is created (or updated) with the weight set to be

the amount of time spent together. The graphs generated by this process, despite

being sparse (average degree = 1% of graph size), exhibit properties (i.e., having a

high clustering coefficient, small diameter, a heavy tailed degree distribution, etc.)

that are typical of “small world” social networks (see Table 4.1)[117, 87].

For comparison, we also report corresponding features for the Erdös-Renyi

random graph model G(n, p) set to yield approximately the same expected degree.

More specifically, we see that our graphs have a clustering coefficient of 0.6675, which

n (num. nodes) 8,785
m (num. edges) 193,985
〈k〉 (mean degree) 44.16
kmax (max. degree) 317.0

σ (std. dev. degree dist.) 47.16
σrand (std. dev. degree dist. G(n, p)) 7.84

cc (clust. coeff.) 0.6675
ccrand (clust. coeff. G(n, p)) 0.0100

c (num. components) 58.0
crand (num. components G(n, p)) 1
ngiant (num. nodes giant comp.) 8,475.37 (96.47%)
mgiant (num. edges giant comp.) 193,945.63 (99.26%)

diam (diam. giant comp.) 17.0
〈ℓ〉 (ave. path len. giant comp.) 4.423

Table 4.1: Statistics for contact graph.

is orders of magnitude larger than the clustering coefficient of the Erdös-Renyi graph



www.manaraa.com

110

of similar size and edge-density. Our contact graphs have one giant component, con-

sisting of more than 96% of the nodes, along with many tiny connected components.

This makes it structurally very different from the comparable Erdös-Renyi graph,

that has a single connected component. The giant components in our contact graphs

have a very small diameter (17) and average path length (4.424) relative to their size.

This attempt at generating HCW and patient contact networks extends two of

our earlier, more primitive attempts [31, 30, 96, 29]. In [31, 30, 32] we used the EMR

login data directly to obtain HCW contacts by creating a contact (edge) between

two HCWs who have logged in in nearby locations at roughly the same time. Those

prior results serve as examples of additional potential applications of contact graphs

generated from the center-based models described in Chapter 2.

4.3 Time clock placement

The UIHC is a very large tertiary care facility with about 8, 000 HCWs on

staff. Since HCWs clock in at the start of the shift, good clock placement can affect

institutional efficiency and therefore, profitability. There are two kinds of clocks: a

basic model whose functionality is limited to clocking in, and a premium model that

is capable of displaying information such as the cafeteria menu for the day and use of

sick days. UIHC is interested in placing the clocks near where people start the work

day so they can clock in and out immediately before and after work and cut down

on time spent walking to and from their work locations while clocked in. The clocks

with more advanced functionality are targeted toward the nursing staff.

Roughly speaking, the UIHC is interested in placing clocks so as to minimize
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average distance from a HCW to a time clock. If HCWs had fixed locations or if

we had full knowledge of their start and finish locations, then this problem could be

modeled as the well known k-medians clustering problem, which aims to minimize

the average distance to the closest of the k median locations. But it turns out that

the k-medians problem is a useful model even without precise location information,

because we have estimated HCW spatial distributions. Algorithms for the k-median

problem can work with spatial distributions rather than exact locations and minimize

the average expected distance between HCWs and clocks.

We solve the problem in two separate steps. The first step is deciding where

to put the time clocks, and the second step is deciding which clocks should be the

basic model, and which should be the premium model.

4.3.0.2 k-means and k-medians

We first implemented a simple 2-approximation algorithm for the k-means

problem [58], which aims to minimize the maximum distance between any HCW

centers and the closest of the k mean locations. We find that a typical run yields a

solution with at least one HCW needing to travel 30 units to reach a clock, and on

average a room has a clock 11 units away.

We then implemented a 5-approximation algorithm for the k-median problem.

This algorithm starts with a feasible solution and then tries to swap a clock from

one room to another (presumably without a clock) until no swaps with improvement

above a threshold value are found. Arya et al. [5] show the approximation ratio

of the algorithm to be bounded by OPT · (3 + 2/numSwaps) where numSwaps is
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the number of simultaneous swaps allowed. With nearly 20,000 candidate locations

and 80 clocks though it was not computationally feasible to use anything other than

numSwaps = 1. By solving the k-medians problem we were typically able to get the

average expected distance from a HCW to a clock to be 9.2 weighted hops. Figure

4.2 shows a fifth floor slice of a sample solution, with the lighter dots indicating rooms

with low HCW activity, and the darker dots indicating high HCW activity.

4.3.0.3 UIHC: Was k appropriate?

For any clustering problem we need to be considerate of k. UIHC was also

interested in determining if 80 was a sufficient number of clocks to purchase. Assuming

that queuing is not an issue, Figure 4.3 suggests that 80 clocks provides adequate

coverage and adding more clocks would provide little benefit in this respect. However,

depending on usage habits fewer clocks could result in longer wait times. There is an

opportunity for future work studying how the clocks are being used in practice and

incorporating wait time costs or capacity constraints.

4.3.0.4 Allocating the premium clocks

The process of allocating the premium clocks is straightforward. For each

clock, count the expected number of nurses assigned to that clock. The clocks with

the highest expected number of nurses are allocated the premium model, and the rest

of the clocks are the basic model. It should be noted that the allocation of premium

clocks could potentially have an affect on which clocks nurses use. For example, a

nurse might be willing to walk a little further to use a premium clock. Our cost

function assumes nurses will use the closest clock and does not penalize long walks
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Figure 4.2: Time clocks placed on floor five of the UIHC facility by the weighted
k-median algorithm. Dots represent expected levels of activity and circles represent
placed time clocks. Each HCW can expect to travel about nine weighted hops to
reach the nearest time clock.
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Figure 4.3: The maximum and average distance a HCW needs to travel to reach a
clock versus the number of clocks k.

to premium clocks in particular.
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CHAPTER 5
CONCLUSIONS

We have built and described a realistic simulator that can be used to answer a

wide variety of questions about infection prevention, resource allocation, and patient

care. Our simulation framework requires three primary inputs; architectural, health-

care worker, and patient data. In Chapter 1 we discussed potential architectural data

sources, our spatial model, and the construction of our hospital graph. In Chapter 2

we discussed sources of HCW location data, our model of HCW spatial distributions,

and the process for generating maximum likelihood models including an extension to

better fit observed data for HCWs with multiple foci. In Chapter 3, we discussed our

patient flow models and our process for generating patient agendas. Chapter 4 show-

cased three sample applications for our simulation and HCW and patient models: an

infectious disease simulator, a contact network generator, and identifying location to

place time clocks within the hospital to minimize some cost function.

In designing our simulator, we were able to minimize assumptions about how

HCWs and patients move, effectively avoiding the “random mixing” assumption com-

mon to many infectious disease simulators. Our HCW models are also compact, flex-

ible enough to be used for a wide variety of job roles, training is computationally

feasible even for very large hospitals, and are generative. We translated techniques

from location-aware search into the hospital environment, developed data structures

for use in efficiently processing millions of location data points in tens of thousands

of rooms for thousands of HCWs, and improved the performance of the algorithm for
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identifying optimal single-center HCWmodels. We extended our models to allow mul-

tiple centers, proved that the proposed multi-center log-likelihood functions are not

unimodal implying gradient ascent methods are not guaranteed to find the optimal

solution, and introduced heuristics for training multi-center models that outperform

existing heuristics both in required computation time and in fitting the observed data.

We leveraged our good working relationship with UIHC to get access to unusu-

ally fine-grained healthcare data. We were provided access to architectural blueprints,

19 million EMR HCW logins over a period of 22 months, and data for 104, 543 inpa-

tient visits 307, 692 patient transfers over a period of 41 months. To the best of our

knowledge, this is the first agent-level hospital-wide simulator based on fine-grained

location and interaction data for healthcare workers and patients.

The EMR login data and ADT data, despite being rather noisy, seem to have

enough “signal” to be able to provide robust estimates of spatial distributions of

HCWs and patient flows in a hospital environment. Moreover, EMR login records

are routinely available to nearly every modern healthcare facility. The estimated

spatial distributions match our expectations quite nicely. As far as we know, this is

the first model of HCW spatial distributions in the literature.

5.1 Future Work

Due to the significant and growing costs of healthcare delivery and its im-

plications for quality of life, it seems likely that the body of work concerned with

modeling and simulation within a healthcare environment will continue to attract a

lot of attention. HCW spatial modeling in particular is a relatively unexplored area,
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in which this work attempts to lay some groundwork. Because of its novelty, there

are a number of ways in which these HCW modeling efforts could be streamlined or

extended.

Training HCW models requires some notion of a metric space in which HCW

activity takes place, in our case a graph theoretic model. Constructing such a spatial

model is non-trivial, and could be improved in various ways. For example, to avoid

the laborious task of manually building a hospital graph at other facilities, we have

been exploring automated extraction of graphs from CAD files through the use of

navigation mesh generation [83]. There is also the possibility of using pedometers,

radar, or other techniques and technologies to automatically generate a graph without

CAD files.

HCW modeling requires large amounts of HCW data either collected directly

or inferred from other data sources. Our research group has been exploring the

use of inexpensive, wireless sensor networks to directly collect fine-grained location

and contact information in near real-time [56, 95, 60]. We have recently deployed

a network of these “motes” in an intensive care unit at UIHC. While this dataset

is confined to a single unit, it contains much more fine-grained data than the EMR

data used in this paper. This dataset can be used to validate our spatial distribution

models, overcome limitations in our EMR data, and to generate spatial distribution

models based on more fine-grained data.

Being relatively new territory, there are numerous directions for further study

of HCW models themselves. For example, we have begun exploring how other proba-
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bility decay functions (e.g., exponential) might be incorporated into our model. There

are also potentially numerous opportunities for refining the multi-center models and

model training. It may be possible to develop better heuristics, and there is also the

opportunity to explore whether or not some HCWs might have more than two natural

centers of activity. Future work should also focus on incorporating clinical data into

HCW and patient modeling and agenda generation. For example, the attractiveness

of patient rooms for HCWs should depend on the presence and diagnosis of patients,

and the transition probabilities and LOS in patient models should depend on patient

diagnosis and staffing levels. Additionally, HCWmovement is not likely to actually be

a random walk. Future work should explore adding higher level strategy or memory

to HCW movement, perhaps through the use of hidden Markov models.

The results of our sample applications themselves also suggest further topics

for study. Intensive care recidivism is widely acknowledged to be a problem, but

little is known about its causes or prevention. Our work suggests that overloaded

ICUs contribute to the problem, and we encourage further exploration along these

lines. Our mumps infection control policy simulations suggest that the recent policy

recommendation of a 5 day quarantine period rather than 9 days might lead to larger

mumps outbreaks. This depends to a large extent on how infectious individuals are 7-

11 days after infection. While it is difficult to pinpoint infectious disease parameters,

more data on shedding levels after the onset of symptoms would potentially shed

more light on this issue. The shedding curve we used to inform our model seems

to indicate small, but still significant infectiousness levels after one week. Because
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mumps is rarely fatal, this is a question of reducing costs and management burden.

While it may well be the case that 5 days is the most cost-effective quarantine period,

there seems to be an opportunity for further simulation or econometric analysis.

Beyond the applications highlighted in this work, there are a wealth of oppor-

tunities for improving hospital operations and patient care based on a realistic hos-

pital simulator. Reviews of hospital simulator literature by Jun et al. and England

point to dozens of applications of a realistic hospital simulator including optimizing

bed assignment, sizing facilities, scheduling surgeries and admissions, assisting with

medical decision making, etc. [70, 40]. Operational issues are becoming increasingly

important particularly in emergency departments across the country, which have seen

a nationwide decline in capacity, while simultaneously having to deal with increasing

numbers of visitors [34, 8, 35]. Our simulator could also be extended to estimate the

effects of increased geriatric patient loads over the next decade, and could be used to

test explicit policies for choosing which patients to discharge when ICUs become full

[19].

In addition to these more general operational problems discussed in the hos-

pital simulation literature, other potential applications rely more specifically on our

fine-grained location data. We present two such examples: (1) Is patient care depen-

dent on the distance from the patient bedroom to the service to which that patient

is assigned? Anecdotal evidence suggests that patients far from their physicians tend

to be seen less frequently and later in the day than other patients, and may expect to

spend more time on average in the hospital. (2) Do adverse events, e.g., patient falls
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or medication errors, cluster spatially or temporally? Our models and simulation are

particularly suited to addressing such questions after linking the appropriate datasets.

It should also be noted that this research has implications outside of health-

care. Indeed, the work was inspired by a framework developed to characterize the

centers and dispersions of search engine queries. In general, this framework seems

useful in any resource location problem where the resources are consumed by a pop-

ulation whose locations are uncertain. For example, using this framework one could

answer questions such as “Where should the Iowa City Police Department increase

its presence to combat the rise in downtown violence?”.
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APPENDIX SELECTED PROOFS AND DERIVATIONS

Proof Sketch of Non-concavity of Multi-center Log-likelihood Function

(1) We consider a simple 5 room facility with 2 HCWs. (2) We choose not-

trivial distances between the rooms. (3) We assume HCWA has one login in room 1

and one login in room 2, while HCWB has one login in room 3. (4) We let room 4

and 5 be centers in a multi-center model of HCWA. (5) We find the log-likelihood

function for such a model. (6) We find the Hessian of the log-likelihood function,

and the eigenvector of the Hessian. (7) We fix three of the four decay parameters,

and run a local search to maximize one of the eigenvalues. (8) We show that one of

the eigenvalues is positive for some choice of decay parameters. This implies that the

Hessian is not negative semi-definite, which in turn implies that the log-likelihood

function is non-concave. While the full output is too long to reproduce in its entirety,

the following Mathematica commands will reproduce our results:

(* Define the log-likelihood function *)(* Define the log-likelihood function *)(* Define the log-likelihood function *)

f [B1 , y1 ,B2 , y2 , d11 , d12 , d13 , d21 , d22 , d23 ]:=f [B1 , y1 ,B2 , y2 , d11 , d12 , d13 , d21 , d22 , d23 ]:=f [B1 , y1 ,B2 , y2 , d11 , d12 , d13 , d21 , d22 , d23 ]:=

Log[B1 ∗ d11∧ − y1 + B2 ∗ d21∧ − y2] + Log[B1 ∗ d12∧ − y1 + B2 ∗ d22∧ − y2]+Log[B1 ∗ d11∧ − y1 + B2 ∗ d21∧ − y2] + Log[B1 ∗ d12∧ − y1 + B2 ∗ d22∧ − y2]+Log[B1 ∗ d11∧ − y1 + B2 ∗ d21∧ − y2] + Log[B1 ∗ d12∧ − y1 + B2 ∗ d22∧ − y2]+

Log[1− B1 ∗ d13∧ − y1− B2 ∗ d23∧ − y2]Log[1− B1 ∗ d13∧ − y1− B2 ∗ d23∧ − y2]Log[1− B1 ∗ d13∧ − y1− B2 ∗ d23∧ − y2]

(* Assign some (arbitrarily chosen) distances from each center to each room *)(* Assign some (arbitrarily chosen) distances from each center to each room *)(* Assign some (arbitrarily chosen) distances from each center to each room *)

ll = f [B1, y1,B2, y2, 2, 5, 6, 3, 4, 5]ll = f [B1, y1,B2, y2, 2, 5, 6, 3, 4, 5]ll = f [B1, y1,B2, y2, 2, 5, 6, 3, 4, 5]

(* Find the Hessian *)(* Find the Hessian *)(* Find the Hessian *)

H = D[ll, {{B1, y1,B2, y2}, 2}]H = D[ll, {{B1, y1,B2, y2}, 2}]H = D[ll, {{B1, y1,B2, y2}, 2}]
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(* Find the eigenvalues of the Hessian *)(* Find the eigenvalues of the Hessian *)(* Find the eigenvalues of the Hessian *)

Eig = Eigenvalues[H]Eig = Eigenvalues[H]Eig = Eigenvalues[H]

(* Try to find a set a decay parameters such that one eigenvalue is positive.(* Try to find a set a decay parameters such that one eigenvalue is positive.(* Try to find a set a decay parameters such that one eigenvalue is positive.

Note that this local maximization step is not gauranteedNote that this local maximization step is not gauranteedNote that this local maximization step is not gauranteed

to find such a set of decay parameters. *)to find such a set of decay parameters. *)to find such a set of decay parameters. *)

NMaximize[{Extract[Eig/.y1→ 0.1, 3],B1 > 0.1,B1 < 0.9}, {B1}]NMaximize[{Extract[Eig/.y1→ 0.1, 3],B1 > 0.1,B1 < 0.9}, {B1}]NMaximize[{Extract[Eig/.y1→ 0.1, 3],B1 > 0.1,B1 < 0.9}, {B1}]

NMaximize[{Extract[Eig/.y1→ 0.1, 4],B1 > 0.1,B1 < 0.9}, {B1}]NMaximize[{Extract[Eig/.y1→ 0.1, 4],B1 > 0.1,B1 < 0.9}, {B1}]NMaximize[{Extract[Eig/.y1→ 0.1, 4],B1 > 0.1,B1 < 0.9}, {B1}]

NMaximize[{Extract[Eig/.y2→ 0.1, 1],B2 > 0.1,B2 < 0.9}, {B2}]NMaximize[{Extract[Eig/.y2→ 0.1, 1],B2 > 0.1,B2 < 0.9}, {B2}]NMaximize[{Extract[Eig/.y2→ 0.1, 1],B2 > 0.1,B2 < 0.9}, {B2}]

NMaximize[{Extract[Eig/.y2→ 0.1, 2],B2 > 0.1,B2 < 0.9}, {B2}]NMaximize[{Extract[Eig/.y2→ 0.1, 2],B2 > 0.1,B2 < 0.9}, {B2}]NMaximize[{Extract[Eig/.y2→ 0.1, 2],B2 > 0.1,B2 < 0.9}, {B2}]

NMaximize[{Extract[Eig, 1],B1 > 0.1,B1 < 0.9, y1 > 0.1, y2 > 0.1,B2 > 0.1,NMaximize[{Extract[Eig, 1],B1 > 0.1,B1 < 0.9, y1 > 0.1, y2 > 0.1,B2 > 0.1,NMaximize[{Extract[Eig, 1],B1 > 0.1,B1 < 0.9, y1 > 0.1, y2 > 0.1,B2 > 0.1,

B2 < 0.9}, {B1, y1,B2, y2}]B2 < 0.9}, {B1, y1,B2, y2}]B2 < 0.9}, {B1, y1,B2, y2}]

(* These two sets of decay parameter settings result in two different(* These two sets of decay parameter settings result in two different(* These two sets of decay parameter settings result in two different

eigenvalues taking a psotive value. *)eigenvalues taking a psotive value. *)eigenvalues taking a psotive value. *)

Eigenvalues[H/.{B1→ 0.9, y1→ 0.1, B2→ 0.9, y2→ 0.1}]Eigenvalues[H/.{B1→ 0.9, y1→ 0.1, B2→ 0.9, y2→ 0.1}]Eigenvalues[H/.{B1→ 0.9, y1→ 0.1, B2→ 0.9, y2→ 0.1}]

Eigenvalues[H/.{B1→ 0.2, y1→ 2.9, B2→ 0.5, y2→ 0.3}]Eigenvalues[H/.{B1→ 0.2, y1→ 2.9, B2→ 0.5, y2→ 0.3}]Eigenvalues[H/.{B1→ 0.2, y1→ 2.9, B2→ 0.5, y2→ 0.3}]
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